Skip to main content
Log in

ZnS stacking order influence on the formation of Zn-poor and Zn-rich Cu2ZnSnS4 phase

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper reports the synthesis and characterization of Cu2ZnSnS4 (CZTS) absorber films, prepared by a two-step electrodeposition of a ZnS (zinc sulfide) binary and a CZT (copper, zinc and tin) ternary precursors on Mo/Ti/Si substrates. The as-electrodeposited ZnS/CZT and CZT/ZnS stacks were thermally treated in a tubular furnace in sulfur environment at 550 °C. The role of the ZnS buffer layer is to provide a zinc and sulfur reservoir, needed to complete the formation of kesterite phase. X-ray diffraction and Raman analyses revealed the formation of the CZTS phase. The surface morphology and chemical composition of the films were studied using a scanning electron microscope. The bandgap values inferred from diffuse reflectance data, are discussed with respect to the stoichiometry which is considerably affected by the order of the stacks. Room-temperature photoluminescence of the CZT/ZnS sample showed a board PL band of 1.51 eV. It was found that the film with a ZnS layer on top is preferred for the formation of a Zn-rich single CZTS phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. O. El Khouja, A.C. Galca, K. Nouneh, M.Y. Zaki, M. EbnTouhami, M. Taibi, E. Matei, C.C. Negrila, M. Enculescu, L. Pintilie, Structural, morphological and optical properties of Cu–Fe–Sn–S thin films prepared by electrodeposition at fixed applied potential. Thin Solid Films 721, 138547 (2021). https://doi.org/10.1016/j.tsf.2021.138547

    Article  CAS  Google Scholar 

  2. M. Abusnina, M. Matin, H. Moutinho, M. Al-Jassim, Impact of the stack order in Cu-Zn-Sn metal precursors on the properties of Cu2ZnSnS4 thin films, in IEEE 42nd Photovoltaic Specialist Conference (PVSC) (2015), pp. 1–4. https://doi.org/10.1109/PVSC.2015.7356373

  3. S. Azmi, L. Pezzato, M. Sturaro, E.M. Khoumri, A. Martucci, M. Dabala, A green and low-cost synthetic approach based on deep eutectic choline-urea solvent toward synthesis of CZTS thin films. Ionics 25, 2755–2761 (2019). https://doi.org/10.1007/s11581-018-2719-8

    Article  CAS  Google Scholar 

  4. M.P. Suryawanshi, G.L. Agawane, S.M. Bhosale, S.W. Shin, P.S. Patil, J.H. Kim, A.V. Moholkar, CZTS based thin film solar cells: a status review. Mater. Technol. 28, 98–109 (2013). https://doi.org/10.1179/1753555712Y.0000000038

    Article  CAS  Google Scholar 

  5. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4, 1301465 (2013). https://doi.org/10.1002/aenm.201301465

    Article  CAS  Google Scholar 

  6. C. Yan, J. Huang, K. Sun, S. Johnston, Y. Zhang, H. Sun, A. Pu, M. He, F. Liu, K. Eder, L. Yang, J.M. Cairney, N.J. Ekins-Daukes, Z. Hameiri, J.A. Stride, S. Chen, M.A. Green, X. Hao, Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nat. Energy 3, 764–772 (2018). https://doi.org/10.1038/s41560-018-0206-0

    Article  CAS  Google Scholar 

  7. H.-W. Tsai, C.-W. Chen, S.R. Thomas, C.-H. Hsu, W.-C. Tsai, Y.-Z. Chen, Y.-C. Wang, Z.M. Wang, H.-F. Hong, Y.-L. Chueh, Facile growth of Cu2ZnSnS4 thin-film by one-step pulsed hybrid electrophoretic and electroplating deposition. Sci. Rep. 6, 19102 (2016). https://doi.org/10.1038/srep19102

    Article  CAS  Google Scholar 

  8. M.Y. Zaki, K. Nouneh, M. Ebn Touhami, R.A. Belakhmima, A.C. Galca, L. Pintilie, M. Enculescu, M. Baibarac, M. Taibi, Effect of mixing complexing agents on the properties of electrodeposited CZTS thin films. Opt. Mater. 83, 252–256 (2018). https://doi.org/10.1016/j.optmat.2018.06.030

    Article  CAS  Google Scholar 

  9. C.J. Bosson, M.T. Birch, D.P. Halliday, K.S. Knight, A.S. Gibbs, P.D. Hatton, Cation disorder and phase transitions in the structurally complex solar cell material Cu2ZnSnS4. J. Mater. Chem. A 5, 16672–16680 (2017). https://doi.org/10.1039/C7TA03603E

    Article  CAS  Google Scholar 

  10. M. Kumar, A. Dubey, N. Adhikari, S. Venkatesan, Q. Qiao, Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS–Se solar cells. Energy Environ. Sci. 8, 3134–3159 (2015). https://doi.org/10.1039/C5EE02153G

    Article  CAS  Google Scholar 

  11. R. Caballero, E. Garcia-Llamas, J.M. Merino, M. Leon, I. Babichuk, V. Dzhagan, V. Strelchuk, M. Valakh, Non-stoichiometry effect and disorder in Cu2ZnSnS4 thin films obtained by flash evaporation: Raman scattering investigation. Acta Mater. 65, 412–417 (2014). https://doi.org/10.1016/j.actamat.2013.11.010

    Article  CAS  Google Scholar 

  12. S. Delbos, Kesterite thin films for photovoltaics: a review. EPJ Photovolt. 3, 35004 (2012). https://doi.org/10.1051/epjpv/2012008

    Article  CAS  Google Scholar 

  13. M. Jiang, Xingzhong Y, Cu2ZnSnS4 thin film solar cells: present status and future prospects, in Solar Cells - Research and Application Perspectives, Ed. InTech. (2013). https://doi.org/10.5772/50702.

  14. S. Azmi, E.M. Khoumri, M.E. Marrakchi, L. Pezzato, M. Nohair, M. Dabala, Structural and optical annealing route-dependent properties of CZTS thin films grown by one-step electrodeposition with free annealing sulfurization for photovoltaic application. J. Electron. Mater. 48, 8254–8260 (2019). https://doi.org/10.1007/s11664-019-07677-7

    Article  CAS  Google Scholar 

  15. C. Zhang, J. Tao, J. Chu, An 8.7% efficiency co-electrodeposited Cu2ZnSnS4 photovoltaic device fabricated via a pressurized post-sulfurization process. J. Mater. Chem. C 6, 13275–13282 (2018). https://doi.org/10.1039/C8TC05058A

    Article  CAS  Google Scholar 

  16. L. Yao, J. Ao, M.-J. Jeng, J. Bi, S. Gao, Q. He, Z. Zhou, G. Sun, Y. Sun, L.-B. Change, J.-W. Chen, CZTSe solar cells prepared by electrodeposition of Cu/Sn/Zn stack layer followed by selenization at low Se pressure. Nanoscale Res. Lett. 9, 678 (2014). https://doi.org/10.1186/1556-276X-9-678

    Article  CAS  Google Scholar 

  17. G. Panzeri, R. Dell’Oro, V. Trifiletti, J. Parravicini, M. Acciarri, S. Binetti, L. Magagnin, Copper electrodeposition onto zinc for the synthesis of kesterite Cu2ZnSnS4 from a Mo/Zn/Cu/Sn precursor stack. Electrochem. Commun. 109, 106580 (2019). https://doi.org/10.1016/j.elecom.2019.106580

    Article  CAS  Google Scholar 

  18. P.K. Sarswat, M. Snure, M.L. Free, A. Tiwari, CZTS thin films on transparent conducting electrodes by electrochemical technique. Thin Solid Films 520, 1694–1697 (2012). https://doi.org/10.1016/j.tsf.2011.07.052

    Article  CAS  Google Scholar 

  19. T. Taskesen, V. Steininger, W. Chen, J. Ohland, U. Mikolajczak, D. Pareek, J. Parisi, L. Gutay, Resilient and reproducible processing for CZTSe solar cells in the range of 10%. Prog. Photovolt. Res. Appl. 26, 1003–1006 (2018). https://doi.org/10.1002/pip.3063

    Article  CAS  Google Scholar 

  20. T. Ratz, G. Brammertz, R. Caballero, M. Leon, S. Canulescu, J. Schou, L. Gutay, D. Pareek, T. Taskesen, D.-H. Kim, Physical routes for the synthesis of kesterite. J. Phys. Energy 1, 042003 (2019). https://doi.org/10.1088/2515-7655/ab281c

    Article  CAS  Google Scholar 

  21. M.I. Khalil, O. Atici, A. Lucotti, S. Binetti, A. Le Donne, L. Magagnin, CZTS absorber layer for thin film solar cells from electrodeposited metallic stacked precursors (Zn/Cu-Sn). Appl. Surf. Sci. 379, 91–97 (2016). https://doi.org/10.1016/j.apsusc.2016.04.062

    Article  CAS  Google Scholar 

  22. T. Yuan, Y. Li, M. Jia, Y. Lai, J. Li, F. Liu, Y. Liu, Fabrication of Cu2ZnSnS4 thin film solar cells by sulfurization of electrodeposited stacked binary Cu–Zn and Cu–Sn alloy layers. Mater. Lett. 155, 44–47 (2015). https://doi.org/10.1016/j.matlet.2015.04.101

    Article  CAS  Google Scholar 

  23. J. Tao, L. Chen, H. Cao, C. Zhang, J. Liu, Y. Zhang, L. Huang, J. Jiang, P. Yang, J. Chu, Co-electrodeposited Cu2ZnSnS4 thin-film solar cells with over 7% efficiency fabricated via fine-tuning of the Zn content in absorber layers. J. Mater. Chem. A 4, 3798–3805 (2016). https://doi.org/10.1039/C5TA09636G

    Article  CAS  Google Scholar 

  24. F.Z. Boutebakh, A. Beloucif, M.S. Aida, A. Chettah, N. Attaf, Zinc molarity effect on Cu2ZnSnS4 thin film properties prepared by spray pyrolysis. J. Mater. Sci. Mater. Electron. 29, 4089–4095 (2018). https://doi.org/10.1007/s10854-017-8353-9

    Article  CAS  Google Scholar 

  25. W. Li, J. Chen, C. Yan, X. Hao, The effect of ZnS segregation on Zn-rich CZTS thin film solar cells. J. Alloys Compd. 632, 178–184 (2015). https://doi.org/10.1016/j.jallcom.2015.01.205

    Article  CAS  Google Scholar 

  26. A. Azmand, H. Kafashan, Al-doped ZnS thin films: Physical and electrochemical characterizations. J. Alloys Compd. 779, 301–313 (2019). https://doi.org/10.1016/j.jallcom.2018.11.268

    Article  CAS  Google Scholar 

  27. N. Fathy, R. Kobayashi, M. Ichimura, Preparation of ZnS thin films by the pulsed electrochemical deposition. Mater. Sci. Eng. B 107, 271–276 (2004). https://doi.org/10.1016/j.mseb.2003.11.021

    Article  CAS  Google Scholar 

  28. A. Jafari-Rad, H. Kafashan, Preparation and characterization of electrochemically deposited nanostructured Ti-doped ZnS thin films. Ceram. Int. 45, 21413–21422 (2019). https://doi.org/10.1016/j.ceramint.2019.07.130

    Article  CAS  Google Scholar 

  29. K. Kim, I. Kim, Y. Oh, D. Lee, K. Woo, S. Jeong, J. Moon, Influence of precursor type on non-toxic hybrid inks for high-efficiency Cu2ZnSnS4 thin-film solar cells. Green Chem. 16, 4323–4332 (2014). https://doi.org/10.1039/C4GC00896K

    Article  CAS  Google Scholar 

  30. F. Oliva, L. Arques, L. Acebo, M. Guc, Y. Sanchez, X. Alcobe, A. Perez-Rodriguez, E. Saucedo, V. Izquierdo-Roca, Characterization of Cu2SnS3 polymorphism and its impact on optoelectronic properties. J. Mater. Chem. A 5, 23863–23871 (2017). https://doi.org/10.1039/C7TA08705E

    Article  CAS  Google Scholar 

  31. W. Daranfed, M.S. Aida, N. Attaf, J. Bougdira, H. Rinnert, Cu2ZnSnS4 thin films deposition by ultrasonic spray pyrolysis. J. Alloys Compd. 542, 22–27 (2012). https://doi.org/10.1016/j.jallcom.2012.07.063

    Article  CAS  Google Scholar 

  32. M. Franckevicius, V. Pakstas, G. Grinciene, E. Kamarauskas, R. Giraitis, J. Nekrasovas, A. Selskis, R. Juskenas, G. Niaura, Efficiency improvement of superstrate CZTSSe solar cells processed by spray pyrolysis approach. Sol. Energy 185, 283–289 (2019). https://doi.org/10.1016/j.solener.2019.04.072

    Article  CAS  Google Scholar 

  33. F.Z. Boutebakh, M.L. Zeggar, N. Attaf, M.S. Aida, Electrical properties and back contact study of CZTS/ZnS heterojunction. Optik 144, 180–190 (2017). https://doi.org/10.1016/j.ijleo.2017.06.080

    Article  CAS  Google Scholar 

  34. K. Rudisch, A. Davydova, C. Platzer-Bjorkman, J.J. Scragg, The effect of stoichiometry on Cu-Zn ordering kinetics in Cu2ZnSnS4 thin films. J. Appl. Phys. 123, 161558 (2018). https://doi.org/10.1063/1.5010081

    Article  CAS  Google Scholar 

  35. S. Azmi, A. Moujib, O.A. Layachi, E. Matei, A.C. Galca, M.Y. Zaki, M. Secu, M.I. Rusu, C.E.A. Grigorescu, E.M. Khoumri, Towards phase pure kesterite Cu2ZnSnS4 absorber layers growth via single step free sulfurization electrodeposition under a fix applied potential on Mo substrate. J. Alloys Compd. 842, 155821 (2020). https://doi.org/10.1016/j.jallcom.2020.155821

    Article  CAS  Google Scholar 

  36. M. Dimitrievska, F. Boreo, A.P. Litvinchuk, S. Delsante, G. Borzone, A. Perez-Rodriguez, V. Izquierdo-Roca, Structural polymorphism in ‘Kesterite’ Cu2ZnSnS4: Raman spectroscopy and first-principles calculations analysis. Inorg. Chem. 56, 3467–3474 (2017). https://doi.org/10.1021/acs.inorgchem.6b03008

    Article  CAS  Google Scholar 

  37. Y. Havryliuk, M.Y. Valakh, V. Dzhagan, O. Greshchuk, V. Yukhymchuk, A. Raevskaya, O. Stroyuk, O. Selyshchev, N. Gaponik, D.R.T. Zahn, Raman characterization of Cu2ZnSnS4 nanocrystals: phonon confinement effect and formation of CuxS phases. RSC Adv. 8, 30736–30746 (2018). https://doi.org/10.1039/C8RA05390A

    Article  CAS  Google Scholar 

  38. P.A. Fernandes, P.M.P. Salomé, A.F. da Cunha, Study of polycrystalline Cu2ZnSnS4 films by Raman scattering. J. Alloys Compd. 509, 7600–7606 (2011). https://doi.org/10.1016/j.jallcom.2011.04.097

    Article  CAS  Google Scholar 

  39. D.M. Berg, M. Arasimowicz, R. Djemour, L. Gutay, S. Siebentritt, S. Schorr, X. Fontane, V. Izquierdo-Roca, A. Perez-Rodriguez, P.J. Dale, Discrimination and detection limits of secondary phases in Cu2ZnSnS4 using X-ray diffraction and Raman spectroscopy. Thin Solid Films 569, 113–123 (2014). https://doi.org/10.1016/j.tsf.2014.08.028

    Article  CAS  Google Scholar 

  40. T.J. Huang, X. Yin, C. Tang, G. Qi, H. Gong, A low-cost, ligand exchange-free strategy to synthesize large-grained Cu2ZnSnS4 thin-films without a fine-grain underlayer from nanocrystals. J. Mater. Chem. A 3, 17788–17796 (2015). https://doi.org/10.1039/C5TA03640B

    Article  CAS  Google Scholar 

  41. T. Ericson, J.J. Scragg, T. Kubart, T. Törndahl, C. Platzer-Björkman, Annealing behavior of reactively sputtered precursor films for Cu2ZnSnS4 solar cells. Thin Solid Films 535, 22–26 (2013). https://doi.org/10.1016/j.tsf.2012.10.081

    Article  CAS  Google Scholar 

  42. I.S. Babichuk, M.O. Semenenko, R. Caballero, O.I. Datsenko, S. Golovynski, R. Qiu, C. Huang, R. Hui, I.V. Babichuk, R.R. Ziniuk, M. Stetsenko, O.A. Kapush, J. Yang, B. Li, J. Qu, M. Leon, Raman mapping of MoS2 at Cu2ZnSnS4/Mo interface in thin film. Sol. Energy 205, 154–160 (2020). https://doi.org/10.1016/j.solener.2020.05.043

    Article  CAS  Google Scholar 

  43. A. Aldalbahi, E.M. Mkawi, K. Ibrahim, M.A. Farrukh, Effect of sulfurization time on the properties of copper zinc tin sulfide thin films grown by electrochemical deposition. Sci. Rep. 6, 32431 (2016). https://doi.org/10.1038/srep32431

    Article  CAS  Google Scholar 

  44. Y. Al-Hadeethi, E.M. Mkawi, O. Al-Hartomy, E. Bekyarova, Solvothermal synthesis of kesterite Cu2ZnSnS4 nanocrystals: Influence of glycine complexing agent concentration on properties. Ceram. Int. 47, 11568–11573 (2021). https://doi.org/10.1016/j.ceramint.2020.12.287

    Article  CAS  Google Scholar 

  45. M. Valdes, Y. Sanchez, G. Perelstein, F. Oliva, V. Izquierdo-Roca, A. Perez-Rodriguez, E. Saucedo, Influence of co-electrodeposition parameters in the synthesis of kesterite thin films for photovoltaic. J. Alloys Compd. 839, 155679 (2020). https://doi.org/10.1016/j.jallcom.2020.155679

    Article  CAS  Google Scholar 

  46. M.I. Khalil, R. Bernasconi, L. Pedrazzetti, A. Lucotti, A. Le Donne, S. Binetti, L. Magagnin, Co-electrodeposition of metallic precursors for the fabrication of CZTSe thin films solar cells on flexible Mo foil. J. Electrochem. Soc. 164, D302–D306 (2017). https://doi.org/10.1149/2.1001706jes

    Article  CAS  Google Scholar 

  47. M.C. Johnson, C. Wrasman, X. Zhang, M. Manno, C. Leighton, E.S. Aydil, Self-regulation of Cu/Sn ratio in the synthesis of Cu2ZnSnS4 films. Chem. Mater. 27, 2507–2514 (2015). https://doi.org/10.1021/acs.chemmater.5b00108

    Article  CAS  Google Scholar 

  48. G. Teeter, H. Du, J.E. Leisch, M. Young, F. Yan, S.W. Johnston, P. Dippo, D. Kuciauskas, M.J. Romero, P. Newhouse, S.E. Asher, D.S. Ginley, Combinatorial study of thin-film Cu2ZnSnS4 synthesis via metal precursor sulfurization, in 35th IEEE Photovoltaic Specialists Conference (2010), pp. 000650–000655. https://doi.org/10.1109/PVSC.2010.5616874.

  49. S. Giraldo, Z. Jehl, M. Placidi, V. Izquierdo-Roca, A. Pérez-Rodríguez, E. Saucedo, Progress and perspectives of thin film kesterite photovoltaic technology: a critical review. Adv. Mater. 31, 1806692 (2019). https://doi.org/10.1002/adma.201806692

    Article  CAS  Google Scholar 

  50. H.-C. Ni, C.-H. Lin, K.-Y. Lo, C.-H. Tsai, T.-P. Chen, J.-L. Tsai, J.-R. Gong, Properties of Cu2ZnSnS4 films by sulfurization of CuS-SnS-ZnS precursors using ditert-butylsulfide at atmospheric pressure. ECS J. Solid State Sci. Technol. 4, Q72–Q74 (2015). https://doi.org/10.1149/2.0091508jss

    Article  CAS  Google Scholar 

  51. B. Zhou, D. Xia, Y. Wang, Phase-selective synthesis and formation mechanism of CZTS nanocrystals. RSC Adv. 5, 70117–70126 (2015). https://doi.org/10.1039/C5RA11890E

    Article  CAS  Google Scholar 

  52. M.Y. Zaki, F. Sava, A.T. Buruiana, I.D. Simandan, N. Becherescu, A.C. Galca, C. Mihai, A. Velea, Synthesis and characterization of Cu2ZnSnS4 thin films obtained by combined magnetron sputtering and pulsed laser deposition. Nanomaterials 11, 2403 (2021). https://doi.org/10.3390/nano11092403

    Article  CAS  Google Scholar 

  53. D.M. Berg, A. Crossay, J. Guillot, V. Izquierdo-Roca, A. Perez-Rodriguez, S. Ahmed, H. Deligianni, S. Siebentritt, P.J. Dale, Simplified formation process for Cu2ZnSnS4-based solar cells. Thin Solid Films 573, 148–158 (2014). https://doi.org/10.1016/j.tsf.2014.11.012

    Article  Google Scholar 

  54. N. Thota, M. Gurubhaskar, M.A. Sunil, P. Prathap, Y.P.V. Subbaiah, A. Tiwari, Effect of metal layer stacking order on the growth of Cu2ZnSnS4 thin films. Appl. Surf. Sci. 396, 644–651 (2017). https://doi.org/10.1016/j.apsusc.2016.11.001

    Article  CAS  Google Scholar 

  55. A. Cazzaniga, A. Crovetto, R. B. Ettlinger, S. Canulescu, O. Hansen, N. Pryds, J. Schou, ZnS top layer for enhancement of the crystallinity of CZTS absorber during the annealing, in IEEE 42nd Photovoltaic Specialist Conference (PVSC) (2015), pp. 1–4. https://doi.org/10.1109/PVSC.2015.7355905

  56. H. Ahmoum, P. Chelvanathan, M.S. Su’ait, M. Boughrara, G. Li, A.H.A. Al-Waeli, K. Sopian, M. Kerouad, N. Amin, Impact of preheating environment on microstructural and optoelectronic properties of Cu2ZnSnS4 (CZTS) thin films deposited by spin-coating. Superlattices Microstruct. 140, 106452 (2020). https://doi.org/10.1016/j.spmi.2020.106452

    Article  CAS  Google Scholar 

  57. M. Souli, C. Nefzi, Z. Seboui, A. Mejri, R. Vidu, N. Kamoun-Turki, Improved structural properties, morphological and optical behaviors of sprayed Cu2ZnSnS4 thin films induced by high gamma radiations for solar cells. Mater. Sci. Semicond. 83, 50–57 (2018). https://doi.org/10.1016/j.mssp.2018.04.009

    Article  CAS  Google Scholar 

  58. M. Sampath, K. Sankarasubramanian, J. Archana, Y. Hayakawa, K. Ramamurthi, K. Sethuraman, Structural, optical and photocatalytic properties of spray deposited Cu2ZnSnS4 thin films with various S/(Cu+Zn+Sn) ratio. Mater. Sci. Semicond. Process. 87, 54–64 (2018). https://doi.org/10.1016/j.mssp.2018.07.001

    Article  CAS  Google Scholar 

  59. S. Kermadi, S. Sali, F. Ait Ameur, L. Zougar, M. Bouqmour, A. Toumiat, N.N. Melnik, D.W. Hewak, A. Duta, Effect of copper content and sulfurization process on optical, structural and electrical properties of ultrasonic spray pyrolysed Cu2ZnSnS4 thin films. Mater. Chem. Phys. 169, 96–104 (2016). https://doi.org/10.1016/j.matchemphys.2015.11.035

    Article  CAS  Google Scholar 

  60. C. Rein, S. Engberg, J.W. Andreasen, Stable, carbon-free inks of Cu2ZnSnS4 nanoparticles synthesized at room temperature designed for roll-to-roll fabrication of solar cell absorber layers. J. Alloys Compd. 787, 63–71 (2019). https://doi.org/10.1016/j.jallcom.2019.02.014

    Article  CAS  Google Scholar 

  61. C. Malerba, F. Biccari, C.L.A. Ricardo, M. Valentini, R. Chierchia, M. Muller, A. Santoni, E. Esposito, P. Mangiapane, P. Scardi, A. Mittiga, CZTS stoichiometry effects on the band gap energy. J. Alloys Compd. 582, 528–534 (2014). https://doi.org/10.1016/j.jallcom.2013.07.199

    Article  CAS  Google Scholar 

  62. M.A. Olgar, J. Klaer, R. Mainz, L. Ozyuzer, T. Unold, Cu2ZnSnS4-based thin films and solar cells by rapid thermal annealing processing. Thin Solid Films 628, 1–6 (2017). https://doi.org/10.1016/j.tsf.2017.03.008

    Article  CAS  Google Scholar 

  63. T.P. Dhakal, C. Peng, R. Reid Tobias, R. Dasharathy, C.R. Westgate, Characterization of a CZTS thin film solar cell grown by sputtering method. Sol. Energy 100, 23–30 (2014). https://doi.org/10.1016/j.solener.2013.11.035

    Article  CAS  Google Scholar 

  64. T.K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, D.B. Mitzi, Beyond 11% efficiency: characteristics of state-of-the-art Cu2ZnSn(S, Se)4 solar cells. Adv. Energy Mater. 3, 34–38 (2012). https://doi.org/10.1002/aenm.201200348

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.Y:Z. acknowledges Romanian Ministry of Foreign Affairs and Agence universitaire de la Francophonie for the Eugen Ionescu research and mobility grant at NIMP. All authors acknowledge for financial support the Romanian Ministry of Research and Innovation through the Core Program 2019-2022 (Contracts No. 21N and No. 18N) and PNIII P4-ID-PCE-2020-0827 (Contract No. PCE74/09.02.2021) projects; and the Moroccan Ministry of Higher Education and Research and Centre National pour la Recherche Scientifique et Technique in the framework of PPR/37/2015 project.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MYZ, MET, ACG; Methodology: MYZ, KN, LP; Formal analysis: MYZ, OEK, ACG; Investigation: MYZ, OEK, SA, EM, MIR, CEAG, MB, SB, PB, MB, MS, ACG; Writing original draft: MYZ; Writing—review and editing: MYZ, EM, SA, PB, ACG; Funding acquisition: KN, MET, Aurelian Galca; Resources: MET, EM, LP; Supervision: KN, MET, ACG.

Corresponding author

Correspondence to Mohamed Yassine Zaki.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

The authors agree with Compliance with Ethical Standards of Journal of Materials Science: Materials in Electronics. The authors declare that this article is conforming to ethical standards and does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaki, M.Y., El Khouja, O., Nouneh, K. et al. ZnS stacking order influence on the formation of Zn-poor and Zn-rich Cu2ZnSnS4 phase. J Mater Sci: Mater Electron 33, 11989–12001 (2022). https://doi.org/10.1007/s10854-022-08160-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08160-6

Navigation