Skip to main content
Log in

Electrophoretic deposition: an attractive approach to fabricate graphite anode for flexible Li-ion rechargeable cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this present study, we explore the efficacy of facile electrophoretic deposition technique to fabricate well-adhered and flexible graphite electrode on carbon cloth current collector. In order to fabricate the graphite anode, an electrostatically stabilized graphite-carbon black suspension has been prepared in isopropyl alcohol using polyacrylic acid as dispersant and nickel nitrate as charging agent. The EPD technique allows uniform, porous, and well-adhered coating on each strands of the carbon cloth. The graphite electrode delivers a reversible capacity of ~ 380 mAh/g at a specific current of 100 mA/g and when subjected to a log-term cycling at a specific current of 500 mA/g, it exhibits a specific capacity of ~ 248 mAh/g after 250 cycles. The EPD electrode also demonstrates excellent rate performance delivering a specific capacity of 115 mAh/g at a high specific current of 4000 mA/g. Moreover, upon reducing the specific current to 100 mA/g, it is able to recover ~ 96% of its initial reversible capacity indicating the ability of such EPD grown electrode to withstand a wide range of specific current without any permanent setbacks to its structural or electrochemical properties. Thus, electrophoretic deposition technique can be a potential alternative to fabricate flexible graphite electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The raw and processed data needed to produce these finding could not be shared at this time since the data also form of an ongoing study.

References

  1. Z. Fang, J. Wang, H. Wu, Q. Li, S. Fan, J. Wang, Progress and challenges of flexible lithium ion batteries. J. Power Sources 454, 227932 (2020)

    Article  CAS  Google Scholar 

  2. X. Lin, D. Xue, L. Zhao, F. Zong, X. Duan, X. Pan, J. Zhang, Q. Li, In-situ growth of 1T/2H-MoS2 on carbon fiber cloth and the modification of SnS2 nanoparticles: A three-dimensional heterostructure for high performance flexible lithium-ion batteries. Chem. Eng. J. 356, 483 (2019)

    Article  CAS  Google Scholar 

  3. Q. Xue, J. Sun, Y. Huang, M. Zhu, Z. Pei, H. Li, Y. Wang, N. Li, H. Zhang, C. Zhi, Recent progress on flexible and wearable supercapacitors. Small 13, 1701827 (2017)

    Article  CAS  Google Scholar 

  4. G. Zhou, F. Li, H.-M. Cheng, Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 7, 1307 (2014)

    Article  CAS  Google Scholar 

  5. S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R.P. Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421 (2014)

    Article  CAS  Google Scholar 

  6. H. Zhang, H. Zhao, M.A. Khan, W. Zou, J. Xu, L. Zhang, J. Zhang, Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries. J. Mater. Chem. A 6, 20564 (2018)

    Article  CAS  Google Scholar 

  7. A. Kraytsberg, Y. Ein-Eli, A critical review-promises and barriers of conversion electrodes for Li-ion batteries. J. Solid State Electrochem. 21, 1907 (2017)

    Article  CAS  Google Scholar 

  8. Q. Cui, Y. Zhong, L. Pan, H. Zhang, Y. Yang, D. Liu, F. Teng, Y. Bando, J. Yao, X. Wang, Recent advances in designing high-capacity anode nanomaterials for Li-ion batteries and their atomic-scale storage mechanism studies. Adv. Sci. 5, 1700902 (2018)

    Article  CAS  Google Scholar 

  9. V. Aravindan, Y.-S. Lee, S. Madhavi, Research progress on negative electrodes for practical Li-ion batteries: beyond carbonaceous anodes. Adv. Energy Mater. 5, 1402225 (2015)

    Article  CAS  Google Scholar 

  10. J. Li, J. Li, Z. Ding, X. Zhang, Y. Li, T. Lu, Y. Yao, W. Mai, L. Pan, In-situ encapsulation of Ni3S2 nanoparticles into N-doped interconnected carbon networks for efficient lithium storage. Chem. Eng. J. 378, 122108 (2019)

    Article  CAS  Google Scholar 

  11. J. Li, Z. Ding, J. Li, C. Wang, L. Pan, G. Wang, Synergistic coupling of NiS1.03 nanoparticle with S-doped reduced graphene oxide for enhanced lithium and sodium storage. Chem. Eng. J. 407, 127199 (2021)

    Article  CAS  Google Scholar 

  12. H. Zhang, Y. Yang, D. Ren, L. Wang, X. He, Graphite as anode materials: fundamental mechanism, recent progress and advances. Energy Storage Mater. 36, 147 (2021)

    Article  Google Scholar 

  13. X. Zhang, G. Zhu, M. Wang, J. Li, T. Lu, L. Pan, Covalent-organic-frameworks derived N-doped porous carbon materials as anode for superior long-life cycling lithium and sodium ion batteries. Carbon 116, 686 (2017)

    Article  CAS  Google Scholar 

  14. G.-C. Guo, R.-Z. Wang, B.-M. Ming, C. Wang, S.-W. Luo, M. Zhang, H. Yan, C3N/phosphorene heterostructure: a promising anode material in lithium-ion batteries. J. Mater. Chem. A 7, 2106 (2019)

    Article  CAS  Google Scholar 

  15. C.C. Lalau, C.T. John Low, Electrophoretic deposition for lithium-ion battery electrode manufacture. Batter. Supercaps 2, 551 (2019)

    Article  CAS  Google Scholar 

  16. N.P. Benehkohal, M.J. Sussman, H.-C. Chiu, M. Uceda, R. Gauvin, G.P. Demopoulos, Enabling green fabrication of Li-ion battery electrodes by electrophoretic deposition: growth of thick binder-free mesoporous TiO2-carbon anode films. J. Electrochem. Soc. 162(11), D3013 (2015)

    Article  CAS  Google Scholar 

  17. H. Gwon, J. Hong, H. Kim, D.-H. Seo, S. Jeon, K. Kang, Recent progress on flexible lithium rechargeable batteries. Energy Environ. Sci. 7, 538 (2014)

    Article  CAS  Google Scholar 

  18. H. Cha, J. Kim, Y. Lee, J. Cho, M. Park, Issues and challenges facing flexible lithium-ion batteries for practical application. Small 14, 1702989 (2018)

    Article  CAS  Google Scholar 

  19. L. Fu, C. Yang, R. Wei, X. Pei, J. Teng, D. Kong, Y. Lu, Y. Guo, T. Liu, Y. Hu, B. Yin, Z. Zhang, A. Li, L. Wang, X. Han, In situ atomic-scale observation of AuCu alloy nanowire with superplasticity and high strength at room temperature. Mater. Today Nano 15, 100123 (2021)

    Article  CAS  Google Scholar 

  20. L. Wang, K. Du, C. Yang, J. Teng, L. Fu, Y. Guo, Z. Zhang, X. Han, In situ atomic-scale observation of grain size and twin thickness effect limit in twin-structural nanocrystalline platinum. Nat. Commun. 11, 1167 (2020)

    Article  CAS  Google Scholar 

  21. L. Wang, P. Guan, J. Teng, P. Liu, D. Chen, W. Xie, D. Kong, S. Zhang, T. Zhu, Z. Zhang, E. Ma, M. Chen, X. Han, New twinning route in face-centered cubic nanocrystalline metals. Nat. Commun. 8, 2142 (2017)

    Article  CAS  Google Scholar 

  22. J. Fu, W. Kang, X. Guo, H. Wen, T. Zeng, R. Yuan, C. Zhang, 3D hierarchically porous NiO/graphene hybrid paper anode for long-life and high rate cycling flexible Li-ion batteries. J. Energy Chem. 47, 172 (2020)

    Article  Google Scholar 

  23. X. Zhou, Y. Liu, C. Du, Y. Ren, X. Li, P. Zuo, G. Yin, Y. Ma, X. Cheng, Y. Gao, Free-standing sandwich-type graphene/nanocellulose/silicon laminar anode for flexible rechargeable lithium ion batteries. ACS Appl. Mater. Interfaces 10, 29638 (2018)

    Article  CAS  Google Scholar 

  24. C. Dai, G. Sun, L. Hu, Y. Xiao, Z. Zhang, L. Qu, Recent progress in graphene-based electrodes for flexible batteries. InfoMat 2, 509 (2020)

    Article  CAS  Google Scholar 

  25. R. Zhang, A. Palumbo, J.C. Kim, J. Ding, E.-H. Yang, Flexible graphene-, graphene-oxide-, and carbon-nanotube-based supercapacitors and batteries. Ann. Phys. (Berlin) 531, 1800507 (2019)

    Article  CAS  Google Scholar 

  26. S. Zhu, J. Sheng, Y. Chen, J. Ni, Y. Li, Carbon nanotubes for flexible batteries: recent progress and future perspective. Natl. Sci Rev. 8, 261 (2021)

    Article  CAS  Google Scholar 

  27. H. Shi, G. Wen, Y. Nie, G. Zhang, H. Duan, Flexible 3D carbon cloth as a high-performing electrode for energy storage and conversion. Nanoscale 12, 5261 (2020)

    Article  CAS  Google Scholar 

  28. C. Jiang, Z. Ye, H. Ye, Z. Zou, Li4Ti5O12@carbon cloth composite with improved mass loading achieved by a hierarchical polypyrrole interlayer assisted hydrothermal process for robust free-standing sodium storage. Appl. Surf. Sci. 504, 1444644 (2020)

    Article  CAS  Google Scholar 

  29. S. Du, C. Wu, L. Ao, X. Zhou, K. Jiang, L. Shang, Y. Li, J. Zhang, Z. Hu, J. Chu, Significantly enhanced lithium storage by in situ grown CoS2@MoS2 core–shell nanorods anchored on carbon cloth. Chem. Eng. J. 420, 127714 (2021)

    Article  CAS  Google Scholar 

  30. Y. Fu, H. Zhou, Z. Hu, S. Yin, L. Zhou, Temperature-induced microstructure optimization of Co3O4 for the achievement of a high-areal-capacity carbon cloth-based lithium ion battery anode. Compos. Commun. 22, 100446 (2020)

    Article  Google Scholar 

  31. L. Wang, X. Gu, L. Zhao, B. Wang, C. Jia, J. Xu, Y. Zhao, J. Zhang, ZnO@TiO2 heterostructure arrays/carbon cloth by charge redistribution enhances performance in flexible anode for Li ion batteries. Electrochim. Acta 295, 107 (2019)

    Article  CAS  Google Scholar 

  32. H. Mazor, D. Golodnitsky, L. Burstein, A. Gladkich, E. Peled, Electrophoretic deposition of lithium iron phosphate cathode for thin-film 3D-microbatteries. J. Power Sources 198, 264 (2012)

    Article  CAS  Google Scholar 

  33. M. Uceda, H.-C. Chiu, R. Gauvin, K. Zaghib, G.P. Demopoulos, Electrophoretically co-deposited Li4Ti5O12/reduced graphene oxide nanolayered composites for high-performance battery application. Energy Storage Mater. 26, 560 (2020)

    Article  Google Scholar 

  34. Y. Ouyang, O. Geuli, Q. Hao, D. Mandler, Controllable assembly of hybrid electrodes by electrophoretic deposition for high-performance battery−supercapacitor hybrid devices. ACS Appl. Energy Mater. 3, 1784 (2020)

    Article  CAS  Google Scholar 

  35. K. Moyera, R. Carter, T. Hanken, A. Douglas, L. Oakes, C.L. Pint, Electrophoretic deposition of LiFePO4 onto 3-D current collectors for high areal loading battery cathodes. Mater. Sci. Eng. B 241, 42 (2019)

    Article  CAS  Google Scholar 

  36. D. Das, A. Mitra, S. Jena, S.B. Majumder, R.N. Basu, Electrophoretically deposited ZnFe2O4-carbon black porous film as a superior negative electrode for lithium-ion battery. ACS Sustain. Chem. Eng. 6, 17000 (2018)

    Article  CAS  Google Scholar 

  37. S. Das, D. Das, A. Mitra, S. Jena, A. Bhattacharya, S.B. Majumder, Electrophoretic deposition of ZnFe2O4—carbonaceous composites as promising anode for lithium-ion batteries. Mater. Lett. 301, 130265 (2021)

    Article  CAS  Google Scholar 

  38. S. Das, D. Das, S. Jena, A. Mitra, A. Bhattacharya, S.B. Majumder, Electrophoretic deposition of nickel ferrite anode for lithium-ion half-cell with superior rate performance. Surf. Coat. Technol. 421, 127365 (2021)

    Article  CAS  Google Scholar 

  39. T. Majumder, D. Das, S. Jena, A. Mitra, S. Das, S.B. Majumder, Electrophoretic deposition of metal-organic framework derived porous copper oxide anode for lithium and sodium ion rechargeable cells. J. Alloys Compd. 879, 160462 (2021)

    Article  CAS  Google Scholar 

  40. T. Majumder, D. Das, S.B. Majumder, Investigations on the electrochemical characteristics of electrophoretically deposited NiTiO3 negative electrode for lithium-ion rechargeable cells. J. Phys. Chem. Solids 158, 110239 (2021)

    Article  CAS  Google Scholar 

  41. L. Dashairya, D. Das, P. Saha, Electrophoretic deposition of antimony/reduced graphite oxide hybrid nanostructure: a stable anode for lithium-ion batteries. Mater. Today Commun. 24, 101189 (2020)

    Article  CAS  Google Scholar 

  42. N. Lingappan, L. Kong, M. Pecht, The significance of aqueous binders in lithium-ion batteries. Renew. Sustain. Energy Rev. 147, 111227 (2021)

    Article  CAS  Google Scholar 

  43. J. Chong, S. Xuna, H. Zheng, X. Song, G. Liu, P. Ridgway, J.Q. Wang, V.S. Battaglia, A comparative study of polyacrylic acid and poly (vinylidene difluoride) binders for spherical natural graphite/LiFePO4 electrodes and cells. J. Power Sources 196, 7707 (2011)

    Article  CAS  Google Scholar 

  44. F. Jeschull, M.J. Lacey, D. Brandell, Functional binders as graphite exfoliation suppressants in aggressive electrolytes for lithium-ion batteries. Electrochim. Acta 175, 141 (2015)

    Article  CAS  Google Scholar 

  45. Z. Zhang, T. Zeng, Y. Lai, M. Jia, J. Li, A comparative study of different binders and their effects on electrochemical properties of LiMn2O4 cathode in lithium ion batteries. J. Power Sources 247, 1 (2014)

    Article  CAS  Google Scholar 

  46. D. Aurbach, B. Markovsky, I. Weissman, E. Levi, Y. Ein-Eli, On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim. Acta 45, 67 (1999)

    Article  CAS  Google Scholar 

  47. B. Markovsky, M.D. Levi, D. Aurbach, The basic electroanalytical behavior of practical graphite-lithium intercalation electrodes. Electrochim. Acta 43, 2287 (1998)

    Article  CAS  Google Scholar 

  48. Y. Wang, H. Zheng, Q. Qu, L. Zhang, V.S. Battaglia, H. Zheng, Enhancing electrochemical properties of graphite anode by using poly(methylmethacrylate)– poly(vinylidene fluoride) composite binder. Carbon 92, 318 (2015)

    Article  CAS  Google Scholar 

  49. J. Li, Y. Zhao, N. Wang, Y. Ding, L. Guan, Enhanced performance of a MnO2–graphene sheet cathode for lithium ion batteries using sodium alginate as a binder. J. Mater. Chem. 22, 13002 (2012)

    Article  CAS  Google Scholar 

  50. L. Zhang, M. Zeng, D. Wu, X. Yan, Magnetic field regulating the graphite electrode for excellent lithium-ion batteries performance. ACS Sustain. Chem. Eng. 7, 6152 (2019)

    Article  CAS  Google Scholar 

  51. K.-E. Kim, J.Y. Jang, I. Park, M.-H. Woo, M.-H. Jeong, W.C. Shin, M. Ue, N.-S. Choi, A combination of lithium difluorophosphate and vinylene carbonate as reducible additives to improve cycling performance of graphite electrodes at high rates. Electrochem. Commun. 61, 121 (2015)

    Article  CAS  Google Scholar 

  52. J. Billaud, F. Bouville, T. Magrini, C. Villevieille, A.R. Studart, Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries. Nat. Energy 1, 16097 (2016)

    Article  CAS  Google Scholar 

  53. F. Ding, W. Xu, D. Choi, W. Wang, X. Li, M.H. Engelhard, X. Chen, Z. Yang, J.-G. Zhang, Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries. J. Mater. Chem. 22, 12745 (2012)

    Article  CAS  Google Scholar 

  54. D. Dang, Y. Wang, S. Gao, Y.-T. Cheng, Freeze-dried low-tortuous graphite electrodes with enhanced capacity utilization and rate capability. Carbon 159, 133 (2020)

    Article  CAS  Google Scholar 

  55. F. Zhang, K. Wu, X. Xu, W. Wu, X. Hu, K. Yu, C. Liang, 3D printing of graphite electrode for lithium-ion battery with high areal capacity. Energy Technol. (2021). https://doi.org/10.1002/ente.202100628

    Article  Google Scholar 

  56. J. Kim, S. Maria, N. Jeghan, G. Lee, Superior fast-charging capability of graphite anode via facile surface treatment for lithium-ion batteries. Microporous Mesoporous Mater. 305, 110325 (2020)

    Article  CAS  Google Scholar 

  57. M.S. Yazici, D. Krassowski, J. Prakash, Flexible graphite as battery anode and current collector. J. Power Sources 141, 171 (2005)

    Article  CAS  Google Scholar 

  58. H.R.K.M. Emani, X. Zhang, G. Wang, D. Maddipatla, T. Saeed, Q. Wu, W. Lu, M.Z. Atashbar, in 2021 IEEE international conference on flexible and printable sensors and systems (FLEPS). (2021), pp. 1–4. https://doi.org/10.1109/FLEPS51544.2021.9469794

  59. L. Jabbour, C. Gerbaldi, D. Chaussy, E. Zeno, S. Bodoardo, D. Beneventi, Microfibrillated cellulose–graphite nanocomposites for highly flexible paper-like Li-ion battery electrodes. J. Mater. Chem. 20, 7344 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sarmistha Basu gratefully acknowledges the full financial support for the present work by the Department of Science & Technology under WOS—A scheme vide their sanction No. SR/WOS – A/PM – 54/2019 (G) dated 12 – 11 – 2020. She also acknowledges the lab facilities provided by the Department of Physics, Central Research Facilities and Materials Science Center for the successful execution of the present work. The authors like to acknowledge the FESEM facility sponsored by DST-FIST at Materials Science Centre, Indian Institute of Technology Kharagpur for scanning electron microscopy experiments.

Funding

This work was supported by Department of Science & Technology, Government of India [Grant No. SR/WOS – A/PM – 54/2019 (G) dated 12 – 11 – 2020].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The manuscript was written through contributions of all authors. All authors have given consent to the final version of the manuscript.

Corresponding author

Correspondence to Sarmistha Basu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1560 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, D., Majumder, S.B., Dhar, A. et al. Electrophoretic deposition: an attractive approach to fabricate graphite anode for flexible Li-ion rechargeable cells. J Mater Sci: Mater Electron 33, 13110–13123 (2022). https://doi.org/10.1007/s10854-022-08250-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08250-5

Navigation