Skip to main content
Log in

Improved optical and electrical stability of ZnO nanorods via electrophoretic deposition of graphene thin film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, the optical stability of ZnO nanorods (NRs) was improved at different ambient temperatures through the deposition of graphene flakes. The optical instability of ZnO nanostructures is mostly due to the elevated surface area and adsorption/desorption of oxygen molecules. These terminations are influenced by variation in ambient temperature which can alter the optical characteristics of ZnO nanostructures. To solve this problem, a thin layer of reduced graphene oxide (rGO) was deposited on the surface of ZnO NRs using an electrophoretic deposition technique. The morphological studies of the samples revealed that ZnO NRs substrate was completely covered by rGO. For investigating the influence of rGO on optical stability of ZnO NRs, the photoluminescence (PL) spectra of ZnO NRs were measured at different temperatures before and after deposition of rGO. After transferring graphene sheets, the intensity of PL peaks was reduced due to the slight absorption of emitted photons in the graphene layers. The presence of graphene on ZnO nanostructures reduced the temperature dependence of the PL spectrum at elevated temperatures. Therefore, graphene can be assumed as a transparent layer to improve the optical stability of ZnO nanostructures while preserving its structural properties. To investigate the electrical properties, metal–semiconductor-metal UV sensors were developed based on ZnO NRs before and after deposition of graphene. The optoelectrical characteristics of both devices were measured by recording the current–voltage plots under ultraviolet radiation at different temperatures. The results showed that the photocurrent of the bare ZnO NRs was diminished at elevated temperatures due to the presence of oxygen interstitials and vacancies. However, after deposition of the graphene layer, the rate of this decay was minimized at elevated temperatures, improving the optoelectrical stability of ZnO nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Q. Li, J. Bian, J. Sun, J. Wang, Y. Luo, K. Sun, D. Yu, Appl. Surf. Sci. (2010). https://doi.org/10.1016/j.apsusc.2009.09.097

    Article  Google Scholar 

  2. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoç, J. Appl. Phys. (2005). https://doi.org/10.1063/1.1992666

    Article  Google Scholar 

  3. K.S. Siddiqi, A. ur Rahman, Tajuddin, A. Husen, Nanoscale Res. Lett. (2018). https://doi.org/10.1186/s11671-018-2532-3

  4. Z.L. Wang, Mater. Today (2004). https://doi.org/10.1016/S1369-7021(04)00286-X

    Article  Google Scholar 

  5. H. Gullapalli, V.S.M. Vemuru, A. Kumar, A. Botello-Mendez, R. Vajtai, M. Terrones, S. Nagarajaiah, P.M. Ajayan, Small (2010). https://doi.org/10.1002/smll.201000254

    Article  Google Scholar 

  6. A. Kołodziejczak-Radzimska, T. Jesionowski, Materials (2014). https://doi.org/10.3390/ma7042833

    Article  Google Scholar 

  7. Z.M. Kakhaki, A. Youzbashi, N. Naderi, J. Phys. Sci. 26, 41 (2015)

    CAS  Google Scholar 

  8. C.-Y. Lu, S.-J. Chang, S.-P. Chang, C.-T. Lee, C.-F. Kuo, H.-M. Chang, Y.-Z. Chiou, C.-L. Hsu, I.-C. Chen, Appl. Phys. Lett. (2006). https://doi.org/10.1063/1.2360219

    Article  Google Scholar 

  9. S. Shao, K. Zheng, K. Zidek, P. Chabera, T. Pullerits, F. Zhang, Sol. Energy Mater. Sol. Cells (2013). https://doi.org/10.1016/j.solmat.2013.07.046

    Article  Google Scholar 

  10. P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M.O. Guillen, B. Johansson, G.A. Gehring, Nat. Mater. (2003). https://doi.org/10.1038/nmat984

    Article  Google Scholar 

  11. A. Bagabas, A. Alshammari, M.F.A. Aboud, H. Kosslick, Nanoscale Res. Lett. (2013). https://doi.org/10.1186/1556-276X-8-516

    Article  Google Scholar 

  12. Z. Zhao, W. Lei, X. Zhang, B. Wang, H. Jiang, Sensors (2010). https://doi.org/10.3390/s100201216

    Article  Google Scholar 

  13. F. Zhiyong, J.G. Lu, IEEE Trans. Nanotechnol. (2006). https://doi.org/10.1109/TNANO.2006.877428

    Article  Google Scholar 

  14. C.-L. Kuo, C.-L. Wang, H.-H. Ko, W.-S. Hwang, K.-M. Chang, W.-L. Li, H.-H. Huang, Y.-H. Chang, M.-C. Wang, Ceram. Int. (2010). https://doi.org/10.1016/j.ceramint.2009.10.011

    Article  Google Scholar 

  15. S.I. Inamdar, K.Y. Rajpure, J. Alloys Compd. (2014). https://doi.org/10.1016/j.jallcom.2014.01.147

    Article  Google Scholar 

  16. C.M. Shin, J.H. Heo, Y.I. Jeong, H.B. Oh, H. Ryu, W.J. Lee, J.H. Chang, J.H. Kim, H. Choi, Thin Solid Films (2012). https://doi.org/10.1016/j.tsf.2011.10.006

    Article  Google Scholar 

  17. R.S. Ajimsha, R. Manoj, P.M. Aneesh, M.K. Jayaraj, Curr. Appl. Phys. (2010). https://doi.org/10.1016/j.cap.2009.09.002

    Article  Google Scholar 

  18. M. Poornajar, P. Marashi, D. Haghshenas Fatmehsari, M. Kolahdouz Esfahani, Ceram. Int. (2016). https://doi.org/10.1016/j.ceramint.2015.08.073

    Article  Google Scholar 

  19. Q.H. Li, T. Gao, Y.G. Wang, T.H. Wang, Appl. Phys. Lett. (2005). https://doi.org/10.1063/1.1883711

    Article  Google Scholar 

  20. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science (2008). https://doi.org/10.1126/science.1157996

    Article  Google Scholar 

  21. T. Kuila, S. Bose, A.K. Mishra, P. Khanra, N.H. Kim, J.H. Lee, Prog. Mater Sci. (2012). https://doi.org/10.1016/j.pmatsci.2012.03.002

    Article  Google Scholar 

  22. Y. Cui, S.I. Kundalwal, S. Kumar, Carbon (2016). https://doi.org/10.1016/j.carbon.2015.11.018

    Article  Google Scholar 

  23. M. Moradi, N. Naderi, Struct. Chem. (2014). https://doi.org/10.1007/s11224-014-0410-x

    Article  Google Scholar 

  24. B.D. Boruah, D.B. Ferry, A. Mukherjee, A. Misra, Nanotechnology (2015). https://doi.org/10.1088/0957-4484/26/23/235703

    Article  Google Scholar 

  25. F. Pendolino, N. Armata, Synthesis, Graphene Oxide in Environmental Remediation Process (Springer International Publishing, Cham, 2017). https://doi.org/10.1007/978-3-319-60429-9_2

    Book  Google Scholar 

  26. S. Pei, H.-M. Cheng, Carbon (2012). https://doi.org/10.1016/j.carbon.2011.11.010

    Article  Google Scholar 

  27. R. Tarcan, O. Todor-Boer, I. Petrovai, C. Leordean, S. Astilean, I. Botiz, J. Mater. Chem. C (2020). https://doi.org/10.1039/C9TC04916A

    Article  Google Scholar 

  28. Y. Ma, J. Han, M. Wang, X. Chen, S. Jia, J. Materiomics (2018). https://doi.org/10.1016/j.jmat.2018.02.004

    Article  Google Scholar 

  29. F. Omnes, Introduction to Semiconductor Photodetectors (Wiley, Hoboken, 2009). https://doi.org/10.1002/9780470611630.ch1

    Book  Google Scholar 

  30. H.G. Çetinkaya, Ö. Sevgili, Ş Altındal, Physica B (2019). https://doi.org/10.1016/j.physb.2019.02.038

    Article  Google Scholar 

  31. S. Altindal, O. Sevgili, Y. Azizian-Kalandaragh, IEEE Trans. Electron Devices (2019). https://doi.org/10.1109/TED.2019.2913906

    Article  Google Scholar 

  32. N. Naderi, M.R. Hashim, Mater. Lett. (2013). https://doi.org/10.1016/j.matlet.2013.01.102

    Article  Google Scholar 

  33. Y. Zuo, S. Ge, Z. Chen, L. Zhang, X. Zhou, S. Yan, J. Alloys Compd. (2009). https://doi.org/10.1016/j.jallcom.2008.03.010

    Article  Google Scholar 

  34. L. Escobar-Alarcón, M.E. Espinosa-Pesqueira, D.A. Solis-Casados, J. Gonzalo, J. Solis, M. Martinez-Orts, E. Haro-Poniatowski, Appl. Phys. A (2018). https://doi.org/10.1007/s00339-018-1559-8

    Article  Google Scholar 

  35. S. Sadhukhan, T.K. Ghosh, D. Rana, I. Roy, A. Bhattacharyya, G. Sarkar, M. Chakraborty, D. Chattopadhyay, Mater. Res. Bull. (2016). https://doi.org/10.1016/j.materresbull.2016.02.039

    Article  Google Scholar 

  36. D. Yoon, H. Cheong, Raman Spectroscopy for Characterization of Graphene (Springer, Berlin, Heidelberg, 2012). https://doi.org/10.1007/978-3-642-20620-7_9

    Book  Google Scholar 

  37. N. Azadgar, N. Naderi, M.J. Eshraghi, J. Electron. Mater. (2018). https://doi.org/10.1007/s11664-018-6396-1

    Article  Google Scholar 

  38. Ö. Sevgili, S. Yılmaz, Ş Altındal, E. Bacaksız, Ç. Bilkan, Proc. Natl. Acad. Sci. India Sect. A: Phys. Sci. (2017). https://doi.org/10.1007/s40010-017-0366-5

    Article  Google Scholar 

  39. A. Kaya, Ö. Sevgili, Ş Altındal, M. Öztürk, Indian J. Pure Appl. Phys. 53, 56 (2015)

    Google Scholar 

Download references

Funding

This work was supported by Materials and Energy Research Center (MERC) [Grant No. 99392008] and Iran University of Science and Technology (IUST).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. ZS: Methodology, Writing—original draft, Investigation, Visualization, Formal analysis. NN: Project administration, Supervision, Conceptualization, Validation, Writing—review & editing, Resources, Funding acquisition. M-RZM: Supervision, Formal analysis, Funding acquisition. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nima Naderi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saberi, Z., Naderi, N. & Meymian, MR.Z. Improved optical and electrical stability of ZnO nanorods via electrophoretic deposition of graphene thin film. J Mater Sci: Mater Electron 33, 13367–13375 (2022). https://doi.org/10.1007/s10854-022-08274-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08274-x

Navigation