Skip to main content
Log in

Effect of structural site disorder on the optical properties of Ag6+x(P1−xGex)S5I solid solutions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper presents a study of the spectral and temperature dependences of the Ag6+x(P1−xGex)S5I (x = 0.25; 0.5; 0.75) single crystals optical properties. The refractive index (n) and extinction coefficient (k) were investigated by the spectral ellipsometry method. The spectral dependences of the n and k are characterized by the presence of anomalies in the region of the optical absorption edge. The temperature (77–300 K) behavior of the optical absorption edge was studied by optical spectroscopy. The spectral dependences of the absorption coefficient have an exponential form and obey to Urbach’s rule. The corresponding values of pseudogap Eg*, steepness parameter σ, and electron–phonon interaction parameter σ0 are calculated. An increase in temperature causes a decrease in the Eg* values and a monotonic increase in the parameter σ. The compositional dependences of EU and σ0 are characterized by a presence of extreme point for Ag6.75(P0.25Ge0.75)S5I composition. Using Dow–Redfield theory, the mechanism of electron–phonon interaction (EPI) is described. Urbach’s total energy was divided into contributions of temperature-independent (EU)X,C and temperature-dependent (EU)T types of disorder using the Einstein model. It is established that in general, the heterovalent substitution P5+ → Ge4+ leads to a weakening of the EPI in solid solutions. The exception is the Ag6.75(P0.25Ge0.75)S5I composition, for which there is a slight increase in EPI. Peculiarities of EU and σ0 changes in Ag6+x(P1−xGex)S5I solid solutions were explained using structural descriptors. It was established that decrease in the volume of [(PGe)S4] tetrahedron, for Ag6.75(P0.25Ge0.75)S5I solid solution, is one of the factors enhancing the EPI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article. The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. G.B. Nair, H.C. Swart, S.J. Dhoble, Prog. Mater. Sci. (2020). https://doi.org/10.1016/j.pmatsci.2019.100622

    Article  Google Scholar 

  2. A. Mathur, P. Halappa, C. Shivakumara, J. Mater. Sci. (2018). https://doi.org/10.1007/s10854-018-0125-7

    Article  Google Scholar 

  3. P. Halappa, A. Mathur, M.-H. Delville, C. Shivakumara, J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.01.087

    Article  Google Scholar 

  4. J.Y. Kim, J.-W. Lee, H.S. Jung, H. Shin, N.-G. Park, Chem. Rev. (2020). https://doi.org/10.1021/acs.chemrev.0c00107

    Article  Google Scholar 

  5. A. Mathur, A. Li, V. Maheshwari, J. Phys. Chem. Lett. (2021). https://doi.org/10.1021/acs.jpclett.1c00004

    Article  Google Scholar 

  6. A. Mathur, H. Fan, V. Maheshwari, Mater. Adv. (2021). https://doi.org/10.1039/D1MA00377A

    Article  Google Scholar 

  7. R. Saraf, A. Mathur, V. Maheshwari, ACS Appl. Mater. Interfaces. (2020). https://doi.org/10.1021/acsami.0c04346

    Article  Google Scholar 

  8. B. Tabbert, A. Goushcha, in Springer Handbook of Lasers and Optics. ed. by F. Träger (Springer, Berlin, 2012), p.543

    Chapter  Google Scholar 

  9. A. Mathur, V. Maheshwari, J. Mater. Chem. C (2022). https://doi.org/10.1039/D2TC00467D

    Article  Google Scholar 

  10. A. Mathur, H. Fan, V. Maheshwari, ACS Appl. Mater. Interfaces (2021). https://doi.org/10.1021/acsami.1c18939

    Article  Google Scholar 

  11. C. Xie, X.-T. Lu, X.-W. Tong, Z.-X. Zhang, F.-X. Liang, L. Liang, L.-B. Luo, Y.-C. Wu, Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201806006

    Article  Google Scholar 

  12. M. Filep, K. Molnár, M. Sabov, Z. Csoma, A. Pogodin, Opt. Mater. (2021). https://doi.org/10.1016/j.optmat.2021.111753

    Article  Google Scholar 

  13. Z. Shi, A.H. Jayatissa, Materials (2018). https://doi.org/10.3390/ma11050729

    Article  Google Scholar 

  14. P. Zhang, M. Li, W.-C. Chen, Front. Chem. (2022). https://doi.org/10.3389/fchem.2022.802890

    Article  Google Scholar 

  15. P.K. Nayak, S. Mahesh, H.J. Snaith, D. Cahen, Nat. Rev. Mater. (2019). https://doi.org/10.1038/s41578-019-0097-0

    Article  Google Scholar 

  16. M.V. Dambhare, B. Butey, S.V. Moharil, J. Phys. Conf. Ser. (2021). https://doi.org/10.1088/1742-6596/1913/1/012053

    Article  Google Scholar 

  17. S.R. Yousefi, H.A. Alshamsi, O. Amiri, M. Salavati-Niasari, J. Mol. Liq. (2021). https://doi.org/10.1016/j.molliq.2021.116405

    Article  Google Scholar 

  18. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, M. Hassanpour, J. Mater. Sci. Mater. Electron. (2016). https://doi.org/10.1007/s10854-015-3882-6

    Article  Google Scholar 

  19. S.R. Yousefi, A. Sobhani, H.A. Alshamsi, M. Salavati-Niasari, RSC Adv. (2021). https://doi.org/10.1039/D0RA10288A

    Article  Google Scholar 

  20. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, J. Nanostruct. (2016). https://doi.org/10.7508/jns.2016.01.013

    Article  Google Scholar 

  21. S.R. Yousefi, O. Amiri, M. Salavati-Niasari, Ultrason Sonochem. (2019). https://doi.org/10.1016/j.ultsonch.2019.104619

    Article  Google Scholar 

  22. H. Ahmad, S.K. Kamarudin, L.J. Minggu, M. Kassim, Renew. Sustain. Energy Rev. (2015). https://doi.org/10.1016/j.rser.2014.10.101

    Article  Google Scholar 

  23. K. Qanugo, D. Bose, K.K. Thakur, E3S Web Conf. (2021) https://doi.org/10.1051/e3sconf/202130901032.

  24. K. Maeda, K. Domen, J. Phys. Chem. Lett. (2010). https://doi.org/10.1021/jz1007966

    Article  Google Scholar 

  25. M.A. Mahdi, S.R. Yousefi, L.S. Jasim, M. Salavati-Niasari, Int. J. Hydrog. Energy. (2022). https://doi.org/10.1016/j.ijhydene.2022.02.175

    Article  Google Scholar 

  26. S.R. Yousefi, M. Ghanbari, O. Amiri, Z. Marzhoseyni, P. Mehdizadeh, M. Hajizadeh-Oghaz, M. Salavati-Niasari, J. Am. Ceram. Soc. (2021). https://doi.org/10.1111/jace.17696

    Article  Google Scholar 

  27. J. Chen, H. Chen, F. Xu, L. Cao, X. Jiang, S. Yang, Y. Sun, X. Zhao, C. Lin, N. Ye, J. Am. Ceram. Soc. (2021). https://doi.org/10.1021/jacs.1c03930

    Article  Google Scholar 

  28. X. Chen, F. Zhang, L. Liu, B.-H. Lei, X. Dong, Z. Yang, H. Li, S. Pan, Phys. Chem. Chem. Phys. (2016). https://doi.org/10.1039/C5CP06884C

    Article  Google Scholar 

  29. S.R. Yousefi, A. Sobhani, M. Salavati-Niasari, Adv. Powder Technol. (2017). https://doi.org/10.1016/j.apt.2017.02.013

    Article  Google Scholar 

  30. L.M. Lozano, S. Hong, Y. Huang, H. Zandavi, Y.A. El Aoud, Y. Tsurimaki, J. Zhou, Y. Xu, R.M. Osgood, G. Chen, S.V. Boriskina, Opt. Mater. Express (2019). https://doi.org/10.1364/OME.9.001990

    Article  Google Scholar 

  31. S.R. Marder, Chem. Commun. (2006). https://doi.org/10.1039/B512646K

    Article  Google Scholar 

  32. W. Ke, M.G. Kanatzidis, Nat. Commun. (2019). https://doi.org/10.1038/s41467-019-08918-3

    Article  Google Scholar 

  33. M.B. Gray, N.P. Holzapfel, T. Liu, V. da Cruz Pinha Barbosa, N.P. Harvey, P.M. Woodward, J. Mater. Chem. C. (2021). https://doi.org/10.1039/D1TC01737C.

  34. I.M. El Radaf, J. Electron. Mater. (2020). https://doi.org/10.1007/s11664-020-08063-4

    Article  Google Scholar 

  35. J. van Embden, E.D. Gaspera, ACS Appl. Mater. Interfaces. (2019). https://doi.org/10.1021/acsami.8b22414

    Article  Google Scholar 

  36. S.P. Hong, H.K. Park, J.H. Oh, H. Yang, Y.R. Do, J. Mater. Chem. (2012). https://doi.org/10.1039/C2JM33879C

    Article  Google Scholar 

  37. J. Zhang, Y. Huang, Cryst. Res. Technol. (2011). https://doi.org/10.1002/crat.201100045

    Article  Google Scholar 

  38. T.V. Vu, O.Y. Khyzhun, A.A. Lavrentyev, B.V. Gabrelian, V.I. Sabov, M.Y. Sabov, M.Y. Filep, A.I. Pogodin, I.E. Barchiy, A.O. Fedorchuk, B. Andriyevsky, M. Piasecki, Mater. Chem. Phys. (2022). https://doi.org/10.1016/j.matchemphys.2021.125556

    Article  Google Scholar 

  39. P. Boon-on, B.A. Aragaw, C.Y. Lee, J.B. Shi, M.W. Lee, RSC Adv. (2018). https://doi.org/10.1039/C8RA08734B

    Article  Google Scholar 

  40. L. Zhu, Y. Xu, H. Zheng, G. Liu, X. Xu, X. Pan, S. Dai, Sci. China Mater. (2018). https://doi.org/10.1007/s40843-018-9272-3

    Article  Google Scholar 

  41. W.F. Kuhs, R. Nitsche, K. Scheunemann, Mater. Res. Bull. (1979). https://doi.org/10.1016/0025-5408(79)90125-9

    Article  Google Scholar 

  42. T. Nilges, A. Pfitzner, Z. Kristallogr. (2005). https://doi.org/10.1524/zkri.220.2.281.59142

    Article  Google Scholar 

  43. H.J. Deiseroth, S.T. Kong, H. Eckert, J. Vannahme, C. Reiner, T. Zaiss, M. Schlosser, Angew. Chem. Int. Ed. Engl. (2008). https://doi.org/10.1002/anie.200703900

    Article  Google Scholar 

  44. R.B. Beeken, J.J. Garbe, J.M. Gillis, N.R. Petersen, B.W. Podoll, M.R. Stoneman, J. Phys. Chem. Solids (2005). https://doi.org/10.1016/j.jpcs.2004.10.010

    Article  Google Scholar 

  45. M. Laqibi, B. Cros, S. Peytavin, M. Ribes, Solid State Ion. (1987). https://doi.org/10.1016/0167-2738(87)90077-4

    Article  Google Scholar 

  46. X. Feng, P.H. Chien, Y. Wang, S. Patel, P. Wang, H. Liu, M.O. Immediato-Scuotto, Y.Y. Hu, Energy Storag. Mater. (2020). https://doi.org/10.1016/j.ensm.2020.04.042

    Article  Google Scholar 

  47. A. Gautam, M. Sadowski, M. Ghidiu, N. Minafra, A. Senyshyn, K. Albe, W.G. Zeier, Adv. Energy Mater. (2021). https://doi.org/10.1002/aenm.202003369

    Article  Google Scholar 

  48. S. Lin, W. Li, Z. Bu, B. Gao, J. Li, Y. Pei, Mater. Today Phys. (2018). https://doi.org/10.1016/j.mtphys.2018.09.001

    Article  Google Scholar 

  49. S. Lin, W. Li, Y. Pei, Mater. Today. (2021). https://doi.org/10.1016/j.mattod.2021.01.007

    Article  Google Scholar 

  50. S.T. Kong, H.J. Deiseroth, C. Reiner, Ö. Gün, E. Neumann, C. Ritter, D. Zahn, Chem. Eur. J. (2010). https://doi.org/10.1002/chem.200902470

    Article  Google Scholar 

  51. T.J. Slade, V. Gvozdetskyi, J.M. Wilde, A. Kreyssig, E. Gati, L.L. Wang, Y. Mudryk, R.A. Ribeiro, V.K. Pecharsky, J.V. Zaikina, S.L. Bud’ko, P.C. Canfield, Inorg. Chem. (2021). https://doi.org/10.1021/acs.inorgchem.1c03158

  52. E. Gaudin, F. Boucher, V. Petricek, F. Taulelle, M. Evain, Acta Cryst. B. (2000). https://doi.org/10.1107/S0108768199016614

    Article  Google Scholar 

  53. B.K. Heep, K.S. Weldert, Y. Krysiak, T.W. Day, W.G. Zeier, U. Kolb, G.J. Snyder, W. Tremel, Chem. Mater. (2017). https://doi.org/10.1021/acs.chemmater.7b00767

    Article  Google Scholar 

  54. B. Jiang, P. Qiu, H. Chen, Q. Zhang, K. Zhao, D. Ren, X. Shi, L. Chen, Chem. Commun. (2017). https://doi.org/10.1039/C7CC05935C

    Article  Google Scholar 

  55. C. Yang, Y. Luo, X. Li, J. Cui, RSC Adv. (2021). https://doi.org/10.1039/D0RA10454J

    Article  Google Scholar 

  56. J. Kawamura, in Encyclopedia of Materials: Composites, ed By D. Brabazon (Elsevier, New York, 2017), p. 293

  57. J.B. Boyce, B.A. Huberman, Phys. Rep. (1979). https://doi.org/10.1016/0370-1573(79)90067-X

    Article  Google Scholar 

  58. J. Yang, Y. Wang, H. Yang, W. Tang, J. Yang, L. Chen, W. Zhang, J. Phys. Condens. Matter. (2019). https://doi.org/10.1088/1361-648X/ab03b6

    Article  Google Scholar 

  59. I. Hanghofer, M. Brinek, S.L. Eisbacher, B. Bitschnau, M. Volck, V. Hennige, I. Hanzu, D. Rettenwander, H.M.R. Wilkening, Phys. Chem. Chem. Phys. (2019). https://doi.org/10.1039/C9CP00664H

    Article  Google Scholar 

  60. C. Yu, F. Zhao, J. Luo, L. Zhang, X. Sun, Nano Energy (2021). https://doi.org/10.1016/j.nanoen.2021.105858

    Article  Google Scholar 

  61. Y. Subramanian, R. Rajagopal, B. Senthilkumar, Y.J. Park, S. Kang, Y.J. Jung, K.S. Ryu, Electrochim. Acta. (2021). https://doi.org/10.1016/j.electacta.2021.139431

    Article  Google Scholar 

  62. L. Zhou, N. Minafra, W.G. Zeier, L.F. Nazar, Acc. Chem. Res. (2021). https://doi.org/10.1021/acs.accounts.0c00874

    Article  Google Scholar 

  63. K.W. Cheng, W.T. Tsai, Y.H. Wu, J. Power Sources. (2016). https://doi.org/10.1016/j.jpowsour.2016.03.086

    Article  Google Scholar 

  64. B.H. Shambharkar, A.P. Chowdhury, J. Environ. Chem. Eng. (2018). https://doi.org/10.1016/j.jece.2018.02.046

    Article  Google Scholar 

  65. K.Y. Lee, K.W. Cheng, J. Mater. Sci. Mater. Electron. (2021). https://doi.org/10.1007/s10854-021-05709-9

    Article  Google Scholar 

  66. M. Kranjčec, I.P. Studenyak, M.V. Kurik, J. Phys. Chem. Solids. (2006). https://doi.org/10.1016/j.jpcs.2005.10.184

    Article  Google Scholar 

  67. I.P. Studenyak, M.I. Kayla, M. Kranjčec, O.P. Kokhan, Yu.V. Minets, J Phys. Chem. Solids. (2011). https://doi.org/10.1016/j.jpcs.2011.08.012

    Article  Google Scholar 

  68. I.P. Studenyak, V.Y. Izai, V.O. Stephanovich, V.V. Panko, P. Kúš, A. Plecenik, Phys. Status Solidi C (2011). https://doi.org/10.1002/pssc.201084045

    Article  Google Scholar 

  69. I.P. Studenyak, M. Kranjčec, Gy.S. Kovács, V.V. Pan'ko, Yu.M. Azhniuk, I.D. Desnica, O.M. Borets, Yu.V. Voroshilov, Mater. Sci. Eng. B (1998) https://doi.org/10.1016/S0921-5107(97)00278-X

  70. I.P. Studenyak, M.M. Pop, I.O. Shender, A.I. Pogodin, M. Kranjcec, Ukr. J. Phys. Opt. (2021). https://doi.org/10.3116/16091833/22/4/216/2021

    Article  Google Scholar 

  71. I.P. Studenyak, M. Kranjčec, Gy.Sh. Kovács, V.V. Panko, V.V. Mitrovcij, O.A. Mikajlo, Mater. Sci. Eng. B (2003) https://doi.org/10.1016/S0921-5107(02)00392-6

  72. I.P. Studenyak, VYu. Izai, V.I. Studenyak, S.O. Rybak, A.I. Pogodin, O.P. Kokhan, M. Kranjčec, J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2017.11.144

    Article  Google Scholar 

  73. M. Kranjčec, I.P. Studenyak, V.V. Bilanchuk, V.S. Dyordyay, V.V. Panko, J. Phys. Chem. Solids (2004). https://doi.org/10.1016/j.jpcs.2003.10.061

    Article  Google Scholar 

  74. I.P. Studenyak, M. Kranjčec, V.E. Ponomaryov, V.V. Panko, L.M. Suslikov, Phase Transit. (2012). https://doi.org/10.1080/01411594.2011.629362

    Article  Google Scholar 

  75. I.P. Studenyak, M. Kranjčec, V.V. Bilanchuk, O.P. Kokhan, A.F. Orliukas, A. Kezionis, E. Kazakevicius, T. Salkus, Solid State Ion. (2010). https://doi.org/10.1016/j.ssi.2010.09.021

    Article  Google Scholar 

  76. M. Kranjčec, I.P. Studenyak, Gy.S. Kovacs, I.D. Desnica Franković, V.V. Panko, P.P. Guranich, V.Yu. Slivka, J. Phys. Chem. Solids. (2001) https://doi.org/10.1016/S0022-3697(00)00187-6

  77. M.M. Luchynets, V.I. Studenyak, VYu. Izai, Yu.V. Minets, I.P. Studenyak, A. Kežionis, Phase Transit. (2019). https://doi.org/10.1080/01411594.2018.1563788

    Article  Google Scholar 

  78. I.P. Studenyak, V.E. Ponomaryov, M. Kranjčec, Yu.V. Minets, L.M. Suslikov, J. Appl. Spectrosc. (2012). https://doi.org/10.1007/s10812-012-9567-5

    Article  Google Scholar 

  79. I.P. Studenyak, V.E. Ponomarev, M. Kranjčec, VYu. Izai, L.M. Suslikov, Phys. Solid State. (2012). https://doi.org/10.1134/S1063783412060315

    Article  Google Scholar 

  80. I.P. Studenyak, VYu. Izai, V.I. Studenyak, A.I. Pogodin, M.Y. Filep, O.P. Kokhan, B. Grančič, P. Kúš, Ukr. J. Phys. Opt. (2018). https://doi.org/10.3116/16091833/19/4/237/2018

    Article  Google Scholar 

  81. M. Pop, V. Studenyak, A. Pogodin, O. Kokhan, L. Suslikov, I. Studenyak, P. Kúš, Ukr. J. Phys. (2021) https://doi.org/10.15407/ujpe66.5.406

  82. A.I. Pogodin, I.P. Studenyak, I.A. Shender, M.M. Pop, M.J. Filep, T.O. Malakhovska, O.P. Kokhan, P. Kopčanský, T.Y. Babuka, J. Mater. Sci. (2022). https://doi.org/10.1007/s10853-022-07059-1

    Article  Google Scholar 

  83. A.I. Pogodin, M.M. Pop, I.A. Shender, I.P. Studenyak, M.J. Filep, T.O. Malakhovska, O.P. Kokhan, T.Y. Babuka, L.M. Suslikov, V.M. Rubish, J. Mater. Sci. (2022). https://doi.org/10.1007/s10854-022-08422-3

    Article  Google Scholar 

  84. I.P. Studenyak, A.I. Pogodin, M.J. Filep, O.P. Kokhan, O.I. Symkanych, M. Timko, P. Kopčanský, Semicond. Phys. Quantum Electron Optoelectron. (2021) https://doi.org/10.15407/spqeo24.01.026

  85. A. Nagel, K.J. Range, Z. Naturforsch B. (1979). https://doi.org/10.1515/znb-1979-0246

    Article  Google Scholar 

  86. I.P. Studenyak, A.I. Pogodin, M.J. Filep, O.I. Symkanych, T.Y. Babuka, O.P. Kokhan, P. Kúš, J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.159784

    Article  Google Scholar 

  87. R.D. Shannon, Acta Cryst. A (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  88. L.R. Murphy, T.L. Meek, A.L. Allred, L.C. Allen, J. Phys. Chem. A (2000). https://doi.org/10.1021/jp000288e

    Article  Google Scholar 

  89. S. Ohno, B. Helm, T. Fuchs, G. Dewald, M.A. Kraft, S.P. Culver, A. Senyshyn, W.G. Zeier, Chem. Mater. (2019). https://doi.org/10.1021/acs.chemmater.9b01857

    Article  Google Scholar 

  90. M.A. Kraft, S. Ohno, T. Zinkevich, R. Koerver, S.P. Culver, T. Fuchs, A. Senyshyn, S. Indris, B.J. Morgan, W.G. Zeier, J. Am. Chem. Soc. (2018) https://doi.org/10.1021/jacs.8b10282.

  91. P. Bury, M. Veveričík, P. Kopčanský, M. Timko, I.P. Studenyak, A.I. Pogodin, Curr. Comput. Aided Drug Des. (2021). https://doi.org/10.3390/cryst11040413

    Article  Google Scholar 

  92. S.I. Poberezhets, O.V. Kovalchuk, I.P. Studenyak, T.M. Kovalchuk, I.I. Poberezhets, V. Lacková, M. Timko, P. Kopčanský, Semicond. Phys. Quantum Electron. Optoelectron. (2020) https://doi.org/10.15407/spqeo23.02.129

  93. D. Bletskan, V. Vakulchak, V. Studenyak, A. Pogodin, I. Studenyak, in IEEE 12th International Conference on Electronics and Information Technologies (ELIT) (2021). https://doi.org/10.1109/ELIT53502.2021.9501134

  94. N. Sangiorgi, L. Aversa, R. Tatti, R. Verucchi, A. Sanson, Opt. Mater. (2017). https://doi.org/10.1016/j.optmat.2016.11.014

    Article  Google Scholar 

  95. L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louër, P. Scardi, J. Appl. Crystallogr. (1999). https://doi.org/10.1107/S0021889898009856

    Article  Google Scholar 

  96. A. Altomare, C. Cuocci, C. Giacovazzo, A. Moliterni, R. Rizzi, N. Corriero, A. Falcicchio, J. Appl. Crystallogr. (2013). https://doi.org/10.1107/S0021889813013113

    Article  Google Scholar 

  97. K. Momma, F. Izumi, J. Appl. Crystallogr. (2011). https://doi.org/10.1107/S0021889811038970

    Article  Google Scholar 

  98. I.P. Studenyak, M. Kranjcec, Gy.S. Kovacs, V.V. Panko, I.D. Desnica, A.G. Slivka, P.P. Guranich, J. Phys. Chem. Solids (1999). https://doi.org/10.1016/S0022-3697(99)00220-6

  99. C. Howlader, M. Hasan, A. Zakhidov, M.Y. Chen, Opt. Mater. (2020). https://doi.org/10.1016/j.optmat.2020.110445

    Article  Google Scholar 

  100. F.F. Muhammad, M.Y. Yahya, F. Aziz, M.A. Rasheed, K. Sulaiman, J. Mater. Sci. (2017). https://doi.org/10.1007/s10854-017-7347-y

    Article  Google Scholar 

  101. J.L. Meyzonnette, J. Mangin, M. Cathelinaud, in Springer Handbook of Glass. Springer Handbooks, ed. By J.D. Musgraves, J. Hu, L. Calvez (Springer, Cham, 2019), p. 997

  102. D. Poelman, P.F. Smet, J. Phys. D (2003). https://doi.org/10.1088/0022-3727/36/15/316

    Article  Google Scholar 

  103. S.I. Vyatkin, A.N. Romanyuk, Z.Y. Gotra, O.V. Romanyuk, W. Wójcik, R. Romaniuk, Y. Amirgaliyev, A. Assembay, in Proceedings of SPIE, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments. (2017) https://doi.org/10.1117/12.2280983

  104. S.H. Wemple, M. Di Domenico, Phys. Rev. B (1971). https://doi.org/10.1103/PhysRevB.3.1338

    Article  Google Scholar 

  105. M.S. Tubbs, Phys. Stat. Sol. (b) (1970). https://doi.org/10.1002/pssb.19700410164

    Article  Google Scholar 

  106. J. Skaar, Phys. Rev. E (2006). https://doi.org/10.1103/PhysRevE.73.026605

    Article  Google Scholar 

  107. F. Urbach, Phys Rev. (1953). https://doi.org/10.1103/PhysRev.92.1324

    Article  Google Scholar 

  108. M.V. Kurik, Phys. Stat. Sol. (a) (1971). https://doi.org/10.1002/pssa.2210080102

    Article  Google Scholar 

  109. H. Sumi, A. Sumi, J. Phys. Soc. Jpn. (1987). https://doi.org/10.1143/JPSJ.56.2211

    Article  Google Scholar 

  110. H. Sumi, Y. Toyozava, J. Phys. Soc. Jpn. (1971). https://doi.org/10.1143/JPSJ.31.342

    Article  Google Scholar 

  111. J.D. Dow, D. Redfield, Phys. Rev. B (1972). https://doi.org/10.1103/PhysRevB.5.594

    Article  Google Scholar 

  112. L. Samuel, Y. Brada, A. Burger, M. Roth, Phys. Rev. B (1987). https://doi.org/10.1103/PhysRevB.36.1168

    Article  Google Scholar 

  113. V. Heine, J.A. Van Vechten, Phys. Rev. B (1976). https://doi.org/10.1103/PhysRevB.13.1622

    Article  Google Scholar 

  114. M. Beaudoin, A.J.G. DeVries, S.R. Johnson, H. Laman, T. Tiedje, Appl. Phys. Lett. (1997). https://doi.org/10.1063/1.119226

    Article  Google Scholar 

  115. Z. Yang, K.P. Homewood, M.S. Finney, M.A. Harry, K.J. Reeson, J. Appl. Phys. (1995). https://doi.org/10.1063/1.360167

    Article  Google Scholar 

  116. G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, Y. Goldstein, Phys. Rev. Lett. (1981). https://doi.org/10.1103/physrevlett.47.1480

    Article  Google Scholar 

Download references

Acknowledgements

The authors would also thank the Armed Forces of Ukraine for providing security to perform this work. This work has become possible only because of resilience and courage of the Ukrainian Army.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by AP, MP, IS, IS, MF, TM, OK, TB, IS, VR, and PK. The first draft of the manuscript was written by MP and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to A. I. Pogodin.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pogodin, A.I., Pop, M.M., Shender, I.O. et al. Effect of structural site disorder on the optical properties of Ag6+x(P1−xGex)S5I solid solutions. J Mater Sci: Mater Electron 33, 21874–21889 (2022). https://doi.org/10.1007/s10854-022-08974-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08974-4

Navigation