Skip to main content

Advertisement

Log in

A comparison electric-dielectric features of Al/p-Si (MS) and Al/ (Al2O3:PVP)/p-Si (MPS) structures using voltage–current (V–I) and frequency–impedance (f–Z) measurements

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, both the Al-(p-Si) (MS) and Al-(Al2O3:PVP)-(p-Si) (MPS) structures were grown onto the same p-type Si wafer in the same conditions to determine the (Al2O3:PVP) organic-interlayer whether the MPS build improves performance or not. For this aim, first, X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM) was used to investigate the structure of the (Al2O3-PVP) inter-layer. Secondly, both the current–voltage (I–V) and capacitance/conductance-frequency (C/G)-f measurements of them were performed at ambient temperature to the comparison of their electric and dielectric properties. Energy-dependence profile of surface states (Nss) was extracted from the positive bias I–V data by considering the voltage-dependence of BH and n. We found that the (Al2O3: PVP) inter-layer leads to a decrease in surface-states (Nss), ideality-factor (n), leakage-current, series-resistance (Rs), and increase in barrier (BH), shunt resistance (Rsh), rectification-ratio (RR = Ifor./Irev. at ± 6 V). Dielectric permittivity and loss (ε′, ε″), loss-tangent (tan δ), real & imaginary components of electric modulus (M′, M″), and ac-conductivity (σac) were extracted from the C-f and G-f measurements in the wide frequency range of 200 Hz-1 MHz at 1.5 V. The observed higher values in the ε′ and ε″ at lower frequencies for MS and MPS structures were attributed to the Nss and easy polarization of interlayer under electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. H.G. Çetinkaya, S. Demirezen, S.A. Yerişkin, Electrical parameters of Au/(%1Ni-PVA)/n-Si (MPS) structure: surface states and their lifetimes. Physica B Condens. 621, 413207 (2021)

    Article  CAS  Google Scholar 

  2. E.E. Tanrıkulu, S.A. Yerişkin, On the changes in the dielectric, electric modulus, and ac electrical-conductivity in the Al/(C29H32O17)/p-Si (MPS) structures in a wide range of frequency and voltage. Physica B Condens. 623, 413345 (2021)

    Article  CAS  Google Scholar 

  3. Ş Altındal, A. Barkhordari, S. Özçelik, G. Pirgholi-Givi, H. Reza Mashayekhi, Y. Azizian-Kalandaragh, A comparison of electrical characteristics of Au/n-Si (MS) structures with PVC and (PVC: Sm2O3) polymer interlayer. Phys Scr. 96, 125838 (2021)

    Article  Google Scholar 

  4. M.S.P. Reddy, K. Sreenu, V.R. Reddy, C. Park, Modified electrical properties and the transport mechanism of Ti/p-InP Schottky structure with a polyvinyl-pyrrolidone (PVP) polymer interlayer. J Mater Sci. 28, 4847–4855 (2017)

    Google Scholar 

  5. S.A. Yerişkin, The investigation of effects of (Fe2O4-PVP) organic interlayer, surface states, and series resistance on the electrical characteristics and sources of them. J Mater Sci. 30, 17032–17039 (2019)

    Google Scholar 

  6. V.R. Reddy, Electrical properties of Au/polyvinylidene fluoride/n-InP Schottky diode with polymer interlayer. Thin Solid Films 556, 300–306 (2014)

    Article  CAS  Google Scholar 

  7. M. Sharma, S.K. Tripathi, analysis of interface states and series resistance for Al/PVA:n-CdS nanocomposite metal-semiconductor and metal-insulator-semiconductor diode structures. Appl Phys A. 113, 491–499 (2013)

    Article  CAS  Google Scholar 

  8. S.A. Yerişkin, Y.Ş Asar, Influence of graphene doping rate in PVA organic thin film on the performance of Al/p-Si structure. Mater Sci 32, 22860–22867 (2021)

    Google Scholar 

  9. A. Eroğlu, S. Demirezen, Y. Azizian-Kalandaragh, Ş Altındal, A comparative study on the electrical properties and conduction mechanisms of Au/n-Si Schottky diodes with/without an organic interlayer. J. Mater Sci. 31, 14466–14477 (2020)

    Google Scholar 

  10. V. Bühler, Polyvinylpyrrolidone excipients for pharmaceuticals: povidone, crospovidone, and copovidone (Springer Science & Business Media, 2005)

    Google Scholar 

  11. A. Tataroğlu, Ş Altındal, Y. Azizian-Kalandaragh, Electrical characterization of Au/n-Si (MS) diode with and without graphene-polyvinylpyrrolidone (Gr-PV) interface layer. J. Mater Sci.: Mater. Electron. 32, 3451–3459 (2021)

    Google Scholar 

  12. S. Demirezen, S.A. Yerişkin, Frequency and voltage-dependent dielectric spectroscopy characterization of Al/(Coumarin-PVA)/p-Si structures. J. Mater Sci.: Mater. Electron. 32, 25339–25349 (2021)

    CAS  Google Scholar 

  13. A. Tataroglu, A.B. Ulusan, Ş Altındal, Y. Azizian-Kalandaragh, A Compare Study on Electrical Properties of MS Diodes with and Without CoFe2O4-PVP Interlayer. Inorg Organomet Polym Mater J 31, 1668–1675 (2021)

    Article  CAS  Google Scholar 

  14. G. Pirgholi-Givi, Ş Altındal, M.A. Shahedi, A.S. Namini, J. Farazin, Y. Azizian-Kalandaragh, The effect of cadmium impurities in the (PVP-TeO2) interlayer in Al/p-Si (MS) Schottky barrier diodes (SBDs): exploring its electrophysical parameters. Physica B Condens. 604, 412617 (2021)

    Article  CAS  Google Scholar 

  15. Ö. Güllü, A. Türüt, Electrical analysis of organic interlayer-based metal-interlayer- semiconductor diode structures. J. Appl. Phys. 106, 103717–103722 (2009)

    Article  CAS  Google Scholar 

  16. B. Akin, R.M. Linford, A. Ahmadivand, Ş Altindal, All-dielectric fabry-pérot cavity design for spectrally selective mid-infrared absorption. Phys Status Solidi Basic Res. 259, 2100464 (2022)

    Article  CAS  Google Scholar 

  17. P.A. Prashanth, R.S. Raveendra, R.H. Krishna, S. Ananda, N.P. Bhagya, B.M. Nagabhushana, K. Lingaraju, H.R. Naika, Synthesis, characterizations, antibacterial and photoluminescence studies of solution combustion-derived α-Al2O3 nanoparticles. J. Asian Ceram. Soc. 3, 345–351 (2015)

    Article  Google Scholar 

  18. A.K. Harman, S. Ninomiya, S. Adachi, Optical constants of sapphire (alpha-Al2O3) single crystals. J App Phys. 76, 8032–8036 (1994)

    Article  CAS  Google Scholar 

  19. R.E. Dobrovinskaya, L.A. Leonid, V. Pishchik, Properties of sapphire: micro- and optoelectronic materials, in Structures and systems. ed. by V. Pishchik, L.A. Lytvynov, E.R. Dobrovinskaya (Springer, Boston, 2009), pp.55–176

    Google Scholar 

  20. B. Akin, G. Pirgholi-Givi, J. Farazin, Y. Azizian-Kalandaragh, S¸. Altindal, Utilization of Al2O3/PVP nanocomposite as an interfacial layer for Schottky structures. Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), IEEE. X-017-X-019 (2019).

  21. L. Cao, N. Yang, S. Li, X. Ye, X. Yuan, H. Li, H. Tong, Alumina film deposited by spin-coating method for silicon wafer surface passivation. J. Mater. Sci. Mater. Electron. 31, 2686–2690 (2020)

    Article  CAS  Google Scholar 

  22. S.M. Sze, Physics of semiconductor devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  23. H.C. Card, E.H. Rhoderick, Studies of tunnel MOS diodes I: interface effects in silicon Schottky diodes. J. Phys. D Appl. Phys. 4, 1589–1601 (1971)

    Article  CAS  Google Scholar 

  24. S. Cheung, N. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49, 85–87 (1986)

    Article  CAS  Google Scholar 

  25. D.E. Yıldız, Electrical properties of Au–Cu/ZnO/p-Si diode fabricated by atomic layer deposition. J Mater Sci. 29, 17802–17808 (2018)

    Google Scholar 

  26. M. Sharma, S. Tripathi, Analysis of interface states and series resistance for Al/PVA: n-CdS nanocomposite metal-semiconductor and metal-insulator-semiconductor diode structures. Appl. Phys. A 113, 491–499 (2013)

    Article  CAS  Google Scholar 

  27. A.S. Namini, M. Asl, G. Pirgholi-Givi, S.A. Delbari, J. Farazin, Ş Altındal, Y. Azizian-Kalandaragh, On the electrical characteristics of Al/p-Si diodes with and without (PVP: Sn-TeO2) interlayer using current-voltage (I–V) measurements. Appl. Phys. A 26, 935 (2020)

    Article  CAS  Google Scholar 

  28. Ş Altındal, A. Barkhordari, G. Pirgholi-Givi, M. Ulusoy, H. Mashayekhi, S. Özçelik, Y. Azizian-Kalandaragh, Comparison of the electrical and impedance properties of Au/(ZnO Mn: PVP)/n-Si (MPS) type Schottky-diodes (SDs) before and after gamma-irradiation. Phys. Scr. 96, 125881 (2022)

    Article  Google Scholar 

  29. I. Taşçıoğlu, W.A. Farooq, R. Turan, Ş Altındal, F. Yakuphanoğlu, Current transport mechanisms and density of interface traps in MgZnO/p-Si diodes. J. Alloys Compd 590, 157–161 (2014)

    Article  CAS  Google Scholar 

  30. R.T. Tung, Recent advances in Schottky barrier concepts. Mater. Sci. Eng. R. 35, 1 (2001)

    Article  Google Scholar 

  31. S.A. Yerişkin, M. Balbaşı, İ Orak, The effects of (graphene doped-PVA) interlayer on the determinative electrical parameters of the Au/n-Si (MS) structures at room temperature. J Mater Sci Mater Electron. 28, 14040–14048 (2017)

    Article  CAS  Google Scholar 

  32. H. Norde, A modified forward I–V plot for Schottky diodes with high series resistance. J. Appl. Phys. 50, 5052–5053 (1979)

    Article  CAS  Google Scholar 

  33. K.E. Bohlin, Generalized Norde plot including determination of the ideality factor. J. Appl. Phys. 60, 1223 (1986)

    Article  Google Scholar 

  34. H. Schroeder, Poole-Frenkel-effect as dominating current mechanism in thin oxide Films-An illusion. J. Appl. Phys. 117, 215103 (2015)

    Article  CAS  Google Scholar 

  35. V.R. Reddy, V. Manjunath, V. Janardhanam, Y.H. Kil, C.-J. Choi, Electrical properties and current transport mechanisms of the Au/n-GaN Schottky structure with solution-processed high-k BaTiO3 Interlayer. J. Electron. Mater. 43, 3499–3507 (2014)

    Article  CAS  Google Scholar 

  36. Z. Wanga, W. Zhou, L. Dong, X. Sui, H. Cai, J. Zu, Q. Chen, Dielectric spectroscopy characterization of relaxation process in Ni/epoxy composites. J. Alloys Compd. 682, 738–745 (2016)

    Article  CAS  Google Scholar 

  37. D.E. Yildiz, A. Kocyigit, M.O. Erdal, M. Yıldırım, Dielectric characterization of Al/PCBM:ZnO/p-Si structures for wide-range frequency. Bull Mater Sci 44, 25 (2021)

    Article  CAS  Google Scholar 

  38. H.H. Gullu, D.E. Yildiz, L. Toppare, A. Cirpan, Electrical characteristics of organic heterojunction with an alternating benzotriazole and fluorene containing copolymer. J Mater Sci: Mater Electron. 31, 18816–18831 (2020)

    Google Scholar 

  39. S. More, R. Dhokne, S. Moharil, Dielectric relaxation and electric modulus of polyvinyl alcohol–Zinc oxide composite films. Mater. Res. Express. 4, 055302 (2017)

    Article  CAS  Google Scholar 

  40. Ş Altındal, M. Ulusoy, S. Özçelik, Y. Azizian-Kalandaragh, On the frequency-dependent complex-dielectric, complex-electric modulus and conductivity in Au/(NiS: PVP)/n-Si structures. J Mater Sci Mater Electron. 32, 20071–20081 (2021)

    Article  CAS  Google Scholar 

  41. J. Werner, A.F.J. Levi, R.T. Tung, M. Anzlowar, M. Pinto, Origin of the excess capacitance at intimate Schottky contacts. Phys. Rev. Lett. 60, 53–56 (1988)

    Article  CAS  Google Scholar 

  42. M.H. Abdellatif, A.A. Azab, A.M. Moustafa, Dielectric spectroscopy of localized electrical charges in ferrite thin film. J. Electron. Mater. 47, 378–384 (2017)

    Article  CAS  Google Scholar 

  43. D.E. Yıldız, H.H. Gullu, H.K. Cavus, Effect of TiO2 thin film with different dopants in bringing Au-metal into a contact with n-Si. J Inorg Organomet Polym. 32, 1067–1077 (2022)

    Article  CAS  Google Scholar 

  44. M. Singh, A. Dogra, R. Kumar, Nucl. Inst. Meth. B. 196, 315 (2002)

    Article  CAS  Google Scholar 

  45. H.H. Gullu, D.E. Yildiz, Capacitance, conductance, and dielectric characteristics of Al/TiO2/Si diode. J Mater Sci Mater Electron 32, 13549–13567 (2021)

    Article  CAS  Google Scholar 

  46. H.G. Çetinkaya, M. Yıldırım, P. Durmuş, Ş Altındal, Diode-to-diode variation in dielectric parameters of identically prepared metal-ferroelectric-semiconductor structures. J. Alloys Compd. 728, 896–901 (2017)

    Article  CAS  Google Scholar 

  47. J.R.B.E.H. Nicollian, E.H. Nicollian, MOS (metal oxide semiconductor) physics and technology (Wiley, New York, 1982)

    Google Scholar 

  48. A. Buyukbas, A. Tataroğlu, Effects of temperature on dielectric parameters of metal-oxide-semiconductor capacitor with thermal oxide layer. J. Nanoelectron. Optoelectron. 10(5), 675–679 (2015)

    Article  CAS  Google Scholar 

  49. Ş Altındal, A. Barkhordari, Y. Azizian-Kalandaragh, B.S. Çevrimli, Dielectric properties and negative-capacitance/dielectric in Au/n-Si structures with PVC and (PVC: Sm2O3) interlayer. Mater Sci Semicond Proc. 147, 106754 (2022)

    Article  CAS  Google Scholar 

  50. S.O. Tan, O. Çiçek, Ç.G. Türk, Ş Altındal, Dielectric properties, electric modulus, and conductivity profiles of Al/Al2O3/p-Si type MOS capacitor in large frequency and bias interval. Int. J. Eng. Sci. Technol. 27, 101017 (2022)

    Google Scholar 

  51. Ş Altındal, B. Akın, On the frequency and voltage-dependent main electrical parameters of the Au/ZnO/n-GaAs structures at room temperature by using various methods. Phys. B: Condens. Matter. 594, 412274 (2020)

    Article  CAS  Google Scholar 

Download references

Funding

The author declares that no funds, grants, or other support was received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by the corresponding author Dr. Buket Akin. The first revised draft of the manuscript was written by Dr. Buket Akin and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to B. Akin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

The research is not involving Human Participants and/or Animals and informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akin, B., Farazin, J., Altındal, Ş. et al. A comparison electric-dielectric features of Al/p-Si (MS) and Al/ (Al2O3:PVP)/p-Si (MPS) structures using voltage–current (V–I) and frequency–impedance (f–Z) measurements. J Mater Sci: Mater Electron 33, 21963–21975 (2022). https://doi.org/10.1007/s10854-022-08984-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08984-2

Navigation