Skip to main content

Advertisement

Log in

Characterization of defect structures in nanoscaled W-doped \({\text {TiO}_2}\) tested as supercapacitor electrode materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, Tungsten(W)-doped \({\text {TiO}_2}\) nanoparticles were synthesized using the sol–gel method and were used as electrode materials in supercapacitor applications. The structural and morphological properties of the prepared samples were analyzed by means of XRD, STEM, TEM, and XPS. The analysis of the defect centers was carried out using EPR spectroscopy. The electrochemical analysis of the assembled supercapacitor was done using cyclic voltammetry, galvanostatic cycling with potential limitation technique, potentiostatic electrochemical impedance spectroscopy, and voltage-holding experiments. All the presented samples showed paramagnetic defects in the EPR analysis, while 0.5% W-doped \({\text {TiO}_2}\) showed a maximum signal intensity. The supercapacitor performance from the synthesized electrode material showed highly encouraging results. The equivalent series resistance (R\(_{\text{s}}\)) value for all the designs showed values under “1 \(\Omega\),” which reflects high conductivity. As the maximum EPR intensity comes from \({\text {TiO}_2}\) doped with 0.5% W, the supercapacitor performance of this sample was tested with a newly designed five-electrode system. This design showed superior performance compared to any other used designs with a specific capacitance of 25.5 F g\(^{-1}\), with an energy density of 14.16 Wh kg\(^{-1}\) at 302 kW kg\(^{-1}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. X. Wang et al., Flexible energy-storage devices: design consideration and recent progress. Adv. Mater. 26(28), 4763–4782 (2014)

    Article  CAS  Google Scholar 

  2. M.A. Guerrero, E. Romero, F. Barrero, M.I. Milanés, E. Gonzalez, Supercapacitors: alternative energy storage systems. Przeglad Elektrotechniczny 85(10), 188–195 (2009)

    Google Scholar 

  3. L. Wang et al., Preparation of Fe3O4 with high specific surface area and improved capacitance as a supercapacitor. Nanoscale 5(9), 3793–3799 (2013)

    Article  CAS  Google Scholar 

  4. P. Simon, Y. Gogotsi, Perspectives for electrochemical capacitors and related devices. Nat. Mater. 19(11), 1151–1163 (2020)

    Article  CAS  Google Scholar 

  5. J. Hou et al., Tunable porous structure of carbon nanosheets derived from puffed rice for high energy density supercapacitors. J. Power Sources 371, 148–155 (2017)

    Article  CAS  Google Scholar 

  6. J. Hou et al., Popcorn-derived porous carbon flakes with an ultrahigh specific surface area for superior performance supercapacitors. ACS Appl. Mater. Interfaces 9(36), 30626–30634 (2017)

    Article  CAS  Google Scholar 

  7. C.-C. Hu, K.-H. Chang, M.-C. Lin, Y.-T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 6(12), 2690–2695 (2006)

    Article  CAS  Google Scholar 

  8. S.K. Meher, G.R. Rao, Ultralayered Co3O4 for high-performance supercapacitor applications. J. Phys. Chem. C 115(31), 15646–15654 (2011)

    Article  CAS  Google Scholar 

  9. K. Naoi, M. Morita, Advanced polymers as active materials and electrolytes for electrochemical capacitors and hybrid capacitor systems. Electrochem. Soc. Interface 17(1), 44 (2008)

    Article  CAS  Google Scholar 

  10. D.Y. Liu, J.R. Reynolds, Dioxythiophene-based polymer electrodes for supercapacitor modules. ACS Appl. Mater. Interfaces 2(12), 3586–3593 (2010)

    Article  CAS  Google Scholar 

  11. S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, Graphene oxide- MnO2 nanocomposites for supercapacitors. ACS Nano 4(5), 2822–2830 (2010)

    Article  CAS  Google Scholar 

  12. X. Zhang et al., Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Res. 3(9), 643–652 (2010)

    Article  CAS  Google Scholar 

  13. S. Kasap, I.I. Kaya, S. Repp, E. Erdem, Superbat: battery-like supercapacitor utilized by graphene foam and zinc oxide (ZnO) electrodes induced by structural defects. Nanoscale Adv. 1(7), 2586–2597 (2019)

    Article  CAS  Google Scholar 

  14. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528), 269–271 (2001)

    Article  CAS  Google Scholar 

  15. L. Kavan, K. Kratochvilová, M. Grätzel, Study of nanocrystalline TiO2 (anatase) electrode in the accumulation regime. J. Electroanal. Chem. 394(1–2), 93–102 (1995)

    Article  Google Scholar 

  16. J. Yamamoto et al., A 4% efficient dye-sensitized solar cell fabricated from cathodically electrosynthesized composite titania films. Adv. Mater. 15(21), 1823–1825 (2003)

    Article  CAS  Google Scholar 

  17. T. Fuyuki, T. Kobayashi, H. Matsunami, Effects of small amount of water on physical and electrical properties of TiO2 films deposited by CVD method. J. Electrochem. Soc. 135(1), 248 (1988)

    Article  CAS  Google Scholar 

  18. D.P. Ojha, M.B. Poudel, H.J. Kim, Investigation of electrochemical performance of a high surface area mesoporous Mn doped TiO2 nanoparticle for a supercapacitor. Mater. Lett. 264, 127363 (2020)

    Article  Google Scholar 

  19. Q. Liu et al., A general approach to the fabrication of Sn-doped TiO2 nanotube arrays with titanium vacancies for supercapacitors. Appl. Surf. Sci. 570, 151175 (2021)

    Article  CAS  Google Scholar 

  20. H. Xiao, W. Guo, B. Sun, M. Pei, G. Zhou, Mesoporous TiO2 and co-doped TiO2 nanotubes/reduced graphene oxide composites as electrodes for supercapacitors. Electrochim. Acta 190, 104–117 (2016)

    Article  CAS  Google Scholar 

  21. L. Wu et al., Al-doped TiO2 nanotube arrays achieved by using low boiling AlCl3 as a dopant source for supercapacitors. J. Electrochem. Soc. 166(16), A3889 (2019)

    Article  CAS  Google Scholar 

  22. D.J. Ahirrao, H.M. Wilson, N. Jha, TiO2-nanoflowers as flexible electrode for high performance supercapacitor. Appl. Surf. Sci. 491, 765–778 (2019)

    Article  CAS  Google Scholar 

  23. G. Wang, Z. Liu, J. Wu, Q. Lu, Preparation and electrochemical capacitance behavior of TiO2-b nanotubes for hybrid supercapacitor. Mater. Lett. 71, 120–122 (2012)

    Article  CAS  Google Scholar 

  24. H. Kim et al., A novel high-energy hybrid supercapacitor with an anatase TiO2-reduced graphene oxide anode and an activated carbon cathode. Adv. Energy Mater. 3(11), 1500–1506 (2013)

    Article  CAS  Google Scholar 

  25. Q. Wang, Z. Wen, J. Li, A hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2-b nanowire anode. Adv. Funct. Mater. 16(16), 2141–2146 (2006)

    Article  CAS  Google Scholar 

  26. J. Zheng et al., Improvement of the specific capacitance of V2O5 nanobelts as supercapacitor electrode by tungsten doping. Mater. Chem. Phys. 186, 5–10 (2017)

    Article  CAS  Google Scholar 

  27. K.S. Bhat, H. Nagaraja, Effect of isoelectronic tungsten doping on molybdenum selenide nanostructures and their graphene hybrids for supercapacitors. Electrochim. Acta 302, 459–471 (2019)

    Article  CAS  Google Scholar 

  28. B. Pal et al., Hydrothermal syntheses of tungsten doped TiO2 and TiO2/WO3 composite using metal oxide precursors for charge storage applications. J. Alloys Compd. 740, 703–710 (2018)

    Article  CAS  Google Scholar 

  29. M.M. Momeni, I. Ahadzadeh, Fabrication of tungsten decorated titania nanotube arrays as electrode materials for supercapacitor applications. Int. J. Hydrog. Energy 40(29), 8769–8777 (2015)

    Article  CAS  Google Scholar 

  30. H. Zhou et al., Molybdenum-tungsten mixed oxide deposited into titanium dioxide nanotube arrays for ultrahigh rate supercapacitors. ACS Appl. Mater. Interfaces 9(22), 18699–18709 (2017)

    Article  CAS  Google Scholar 

  31. S. Yoon, E. Kang, J.K. Kim, C.W. Lee, J. Lee, Development of high-performance supercapacitor electrodes using novel ordered mesoporous tungsten oxide materials with high electrical conductivity. Chem. Commun. 47(3), 1021–1023 (2011)

    Article  CAS  Google Scholar 

  32. S. Repp et al., Synergetic effects of Fe3+ doped spinel Li4Ti5O12 nanoparticles on reduced graphene oxide for high surface electrode hybrid supercapacitors. Nanoscale 10(4), 1877–1884 (2018)

    Article  CAS  Google Scholar 

  33. S. Najib et al., Tailoring morphology to control defect structures in ZnO electrodes for high-performance supercapacitor devices. Nanoscale 12(30), 16162–16172 (2020)

    Article  CAS  Google Scholar 

  34. Ö. Balcı et al., Defect-induced B4C electrodes for high energy density supercapacitor devices. Sci. Rep. 11(1), 1–12 (2021)

    Article  Google Scholar 

  35. P. González-Borrero et al., Optical band-gap determination of nanostructured WO3 film. Appl. Phys. Lett. 96(6), 061909 (2010)

    Article  Google Scholar 

  36. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 32(5), 751–767 (1976)

    Article  Google Scholar 

  37. R.F. Howe, M. Gratzel, Epr observation of trapped electrons in colloidal titanium dioxide. J. Phys. Chem. 89(21), 4495–4499 (1985)

    Article  CAS  Google Scholar 

  38. S. Misra et al., Study of paramagnetic defect centers in as-grown and annealed TiO2 anatase and rutile nanoparticles by a variable-temperature x-band and high-frequency (236 ghz) epr. J. Magn. Magn. Mater. 401, 495–505 (2016)

    Article  CAS  Google Scholar 

  39. A. Folli, J. Bloh, D. Macphee, Band structure and charge carrier dynamics in (w, n)-codoped TiO2 resolved by electrochemical impedance spectroscopy combined with uv-vis and epr spectroscopies. J. Electroanal. Chem. 780, 367–372 (2016)

    Article  CAS  Google Scholar 

  40. D. Cordischi, D. Gazzoli, M. Occhiuzzi, M. Valigi, Redox behavior of VI B transition metal ions in rutile TiO2 solid solutions: an XRD and EPR study. J. Solid State Chem. 152(2), 412–420 (2000)

    Article  CAS  Google Scholar 

  41. M.S. Lal, R. Badam, N. Matsumi, S. Ramaprabhu, Hydrothermal synthesis of single-walled carbon nanotubes/TiO2 for quasi-solid-state composite-type symmetric hybrid supercapacitors. J. Energy Storage 40, 102794 (2021)

    Article  Google Scholar 

  42. B. Pant, M. Park, S.-J. Park, TiO2 nps assembled into a carbon nanofiber composite electrode by a one-step electrospinning process for supercapacitor applications. Polymers 11(5), 899 (2019)

    Article  CAS  Google Scholar 

  43. S. Sundriyal, M. Sharma, A. Kaur, S. Mishra, A. Deep, Improved electrochemical performance of rGO/TiO2 nanosheet composite based electrode for supercapacitor applications. J. Mater. Sci.: Mater. Electron. 29(15), 12754–12764 (2018)

    CAS  Google Scholar 

  44. J. Li, J. Ao, C. Zhong, T. Yin, Three-dimensional nanobranched TiO2-carbon nanotube for high performance supercapacitors. Appl. Surf. Sci. 563, 150301 (2021)

    Article  CAS  Google Scholar 

  45. S. Sundriyal, V. Shrivastav, M. Sharma, S. Mishra, A. Deep, Significantly enhanced performance of rGO/TiO2 nanosheet composite electrodes based 1.8 v symmetrical supercapacitor with use of redox additive electrolyte. J. Alloys Compd. 790, 377–387 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

This study is supported by a research grant from the Scientific and Technological Research Council of Turkey (TÜBITAK, Grant No: 118C243) in the frame of the 2232-International Fellowship for Outstanding Researchers. EE and AUA greatly acknowledge the financial support of TÜBITAK. This work was supported by the Romanian Ministry of Research, Innovation and Digitalization, Core Program, Project PN19 35 02 03. AMR, MS, SM, ST, OP, and CL greatly acknowledge the financial support. This work was supported by the Romanian Ministry of Research, Innovation and Digitalization, Core Program PN19-03 (Contract No. 21N/08.02.2019). IDV greatly acknowledges the financial support.

Author information

Authors and Affiliations

Authors

Contributions

AUA contributed to conceptualization, data curation, formal analysis, investigation, methodology, validation, visualization, writing of the original draft preparation, and writing, reviewing, & editing of the manuscript; MS contributed to investigation, methodology, validation, and writing of the original draft preparation; SGM contributed to investigation and software; ST contributed to formal analysis; OP contributed to conceptualization, data curation, formal analysis, investigation, validation, and writing of the original draft preparation; CL contributed to data curation, formal analysis, investigation, and validation; IDV contributed to conceptualization, data curation, supervision, validation, writing of the original draft preparation, and writing, reviewing, & editing of the manuscript; AMR contributed to conceptualization, data curation, formal analysis, investigation, methodology, software, supervision, validation, visualization, writing of the original draft preparation, and writing, reviewing, & editing of the manuscript; EE contributed to conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, project administration, resources, software, supervision, validation, visualization, writing of the original draft preparation, and writing, reviewing, & editing of the manuscript.

Corresponding authors

Correspondence to Arpad Mihai Rostas or Emre Erdem.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare relevant to this article’s content.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammar, A.U., Stefan, M., Macavei, S.G. et al. Characterization of defect structures in nanoscaled W-doped \({\text {TiO}_2}\) tested as supercapacitor electrode materials. J Mater Sci: Mater Electron 34, 98 (2023). https://doi.org/10.1007/s10854-022-09540-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09540-8

Navigation