Skip to main content
Log in

The effects of thermal treatment under argon–oxygen ambient on the microstructure and optical properties of DC sputtered Cr thin films for selective solar absorbers applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work investigated the effect of thermal treatment of as-deposited chromium (Cr) thin films in a vacuum and argon/oxygen ambient for effective deposition of spectral selective solar absorber multilayer films. The DC sputtered Cr thin films were thermally exposed at different temperatures in a controlled argon/oxygen environment. Both as-deposited films and those thermally treated in vacuum and in oxygen–argon ambient revealed a weak XRD diffraction peak at 2θ≈44.3° corresponding to (110) plane of BCC structure of Cr metal. Raman analysis revealed one peak at 846 cm−1 corresponding to Cr–O vibration bonds for films thermally treated at 300 °C in a vacuum and 150 °C and 300 °C in argon–oxygen ambient. As determined by AFM and FE-SEM, surface roughness decreased with temperature increase for films thermally treated in a vacuum. Besides, a mixed trend in the evolution of surface roughness was observed for films thermally treated in argon/oxygen ambient. The average spectral transmittance for samples thermally treated in a vacuum decreased with an increase in temperature; however, the samples thermally treated in an argon–oxygen environment exhibited an increasing trend in average spectral transmittance with the increase in temperature. The results clearly show that post-deposition processing at elevated temperatures, particularly in argon–oxygen ambient, influences the structural and optical properties of prior-deposited Cr thin films. This should be considered when designing and depositing multi-layered dielectric/Cr spectral selective solar absorber films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. R.T. Kivaisi, L. Stensland, Appl. Phys. A (1982). https://doi.org/10.1007/BF00619084

    Article  Google Scholar 

  2. G. Katumba, J. Lu, L. Olumekor, G. Westin, E. Wäckelgård, J. Sol.-Gel Sci. Technol. (2005). https://doi.org/10.1007/s10971-005-4793-4

    Article  Google Scholar 

  3. T.K. Tsai, S.J. Hsueh, J.H. Lee, J.S. Fang, J. Electron. Mater. (2012). https://doi.org/10.1007/s11664-011-1746-2

    Article  Google Scholar 

  4. Y. Li, C. Lin, D. Zhou, Y. An, D. Li, C. Chi, H. Huang, S. Yang, C.Y. Tso, C.Y. Chao, B. Huang, Nano Energy (2019). https://doi.org/10.1016/j.nanoen.2019.103947

    Article  Google Scholar 

  5. K. Xu, M. Du, L. Hao, J. Mi, Q. Yu, S. Li, J. Materiom. (2020). https://doi.org/10.1016/j.jmat.2019.12.012

    Article  Google Scholar 

  6. A. Foroughi-Abari, C. Xu, K.C. Cadien, Thin Solid Films (2012). https://doi.org/10.1016/j.tsf.2011.08.063

    Article  Google Scholar 

  7. A. Rauf, K. Ahmed, F. Nasim, A.N. Khan, A. Gul, I.O.P. Conf, Ser. Mater. Sci. Eng. (2016). https://doi.org/10.1088/1757-899X/146/1/012013

    Article  Google Scholar 

  8. J. Peralta, J. Esteve, A. Lousa, Thin Solid Films (2020). https://doi.org/10.1016/j.tsf.2019.137676

    Article  Google Scholar 

  9. Z.Y. Nuru, M. Msimanga, T.F.G. Muller, C.J. Arendse, C. Mtshali, M. Maaza, Sol. Energy (2015). https://doi.org/10.1016/j.solener.2014.11

    Article  Google Scholar 

  10. A.B. Khelifa, S. Khamlich, Z.Y. Nuru, L. Kotsedi, A. Mebrahtu, M. Balgouthi, A.A. Guizani, W. Dimassi, M. Maaza, J. Alloys Compds. (2018). https://doi.org/10.1016/j.jallcom.2017.11.036

    Article  Google Scholar 

  11. Z. Zeng, L. Wang, L. Chen, J. Zhang, Surf. Coat. Technol. (2006). https://doi.org/10.1016/j.surfcoat.2006.03.038

    Article  Google Scholar 

  12. X.Z. Wang, H.Q. Fan, T. Muneshwar, K. Cadien, J.L. Luo, J. Mater. Sci. Technol. (2021). https://doi.org/10.1016/j.jmst.2020.06.012

    Article  Google Scholar 

  13. H. Barshilia, N. Selvakumar, K. Rajam, A. Biswas, J. Appl. Phys. (2008). https://doi.org/10.1063/1.2831364

    Article  Google Scholar 

  14. S.F. Wang, H.C. Lin, H.Y. Bor, Y.L. Tsai, C.N. Wei, J. Alloys Compds. (2011). https://doi.org/10.1016/j.jallcom.2011.08.052

    Article  Google Scholar 

  15. J.J. Tibaijuka, M.E. Samiji, M. Diale, N.R. Mlyuka, Tanz. J. Sci. (2022). https://doi.org/10.4314/tjs.v48i3.13

    Article  Google Scholar 

  16. F. Maury, A. Douard, S. Delclos, D. Samelor, C. Tendero, Surf. Coat. Technol. (2009). https://doi.org/10.1016/j.surfcoat.2009.04.020

    Article  Google Scholar 

  17. M. Muralidhar Singh, G. Vijaya, M.S. Krupashankara, B.K. Sridhara, T.N. Shridhar, Mater. Today: Proc. 5, 2696 (2018). https://doi.org/10.1016/j.matpr.2018.01.050

    Article  CAS  Google Scholar 

  18. N.R. Mlyuka, PhD Thesis, University of Dar es Salaam (2010)

  19. E.R. Ollotu, N.R. Mlyuka, M.E. Samiji, Tanz. J. Sci. (2021). https://doi.org/10.4314/tjs.v47i2

    Article  Google Scholar 

  20. N.R. Moody, D.P. Adams, A.A. Volinsky, M.D. Kriese, W.W. Gerberich, Mater. Res. Soc. Symp. Proc. (1999). https://doi.org/10.1557/PROC-586-195

    Article  Google Scholar 

  21. R.T. Kivaisi, Sol. Energy Mater. (1981). https://doi.org/10.1016/0165-1633(81)90023-X

    Article  Google Scholar 

  22. R.A. Miller, E. Carl, Lowell (1982). https://doi.org/10.1016/0040-6090(82)90019-0

    Article  Google Scholar 

  23. C.T. Rueden, J. Schindelin, M.C. Hiner, B.E. DeZonia, A.E. Walter, E.T. Arena, K.W. Eliceiri, BMC Bioinform. (2017). https://doi.org/10.1186/s12859-017-1934-z

    Article  Google Scholar 

  24. I. Horcas, R. Fernández, J.M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, A.M. Baro, Rev. Sci. Instrum. (2007). https://doi.org/10.1063/1.2432410h

    Article  Google Scholar 

  25. F.D. Hardcastle, I.E. Wachs, J. Mol. Catal. (1988). https://doi.org/10.1016/0304-5102(88)85092-2

    Article  Google Scholar 

  26. A.K. Yadav, P. Singh, RSC Adv. (2015). https://doi.org/10.1039/c0xx00000x

    Article  Google Scholar 

  27. A. Kumar, D. Pednekar, S. Mukherjee, R.K. Choubey, J. Mater. Sci.: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-04263-0

    Article  Google Scholar 

  28. B. Hymavathi, B. Rajesh Kumar, T. Subba Rao, J. Electron. Mater. (2017). https://doi.org/10.1007/s11664-017-5799-8

    Article  Google Scholar 

  29. J.J. Tibaijuka, M.E. Samiji, N.R. Mlyuka, Tanz. J. Sci. 48, 660 (2018)

    Article  Google Scholar 

  30. D. Naveena, T. Logu, K. Sethuraman, A. Chandra Bose, J. Alloys Compds. (2019). https://doi.org/10.1016/j.jallcom.2019.04

    Article  Google Scholar 

  31. S. Baturay, A. Tombak, D. Kaya, Y.S. Ocak, M. Tokus, M. Aydemir, T. Kilicoglu, J. Sol-Gel Sci. Technol. (2016). https://doi.org/10.1007/s10971-015-3953-4

    Article  Google Scholar 

  32. A. Kumar, M. Kumar, V. Bhatt, S. Mukherjee, S. Kumar, H. Sharma, M.K. Yadav, S. Tomar, J. Yun, R.K. Choubey, Sens. Actuator A Phys. (2021). https://doi.org/10.1016/j.sna.2021.112988

    Article  Google Scholar 

  33. M. Hezam, N. Tabet, A. Mekki, Thin Solid Films (2010). https://doi.org/10.1016/j.tsf.2010.03.091

    Article  Google Scholar 

  34. G.P. Daniel, V.B. Justinvictor, P.B. Nair, K. Joy, P. Koshy, P.V. Thomas, Phys. B Condens. Matter. (2010). https://doi.org/10.1016/j.physb.2010.01.039

    Article  Google Scholar 

  35. P. Eaton, P. West, Atomic Force Microscopy, 1st edn. (Oxford University Press, Oxford, 2010), pp.104–121

    Book  Google Scholar 

  36. O. Malik, F.J. De la Hidalga-Wade, J. Mater. Res. (2015). https://doi.org/10.1557/jmr.2015.159

    Article  Google Scholar 

  37. E.R. Ollotu, J.S. Nyarige, N.R. Mlyuka, M.E. Samiji, M. Diale, J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-04192-y

    Article  Google Scholar 

  38. K.H. Choi, J.Y. Kim, Y.S. Lee, H.J. Kim, Thin Solid Films (1999). https://doi.org/10.1016/S0040-6090(98)01556-9

    Article  Google Scholar 

Download references

Acknowledgements

J.T gratefully thanks the Ministry of Education, Science and Technology of Tanzania (MoEST) for a scholarship. The authors thank the University of Dar es Salaam -Tanzania, University of Pretoria—South Africa, Materials Science and Solar Energy Network for Eastern and Southern Africa (MSSEESA), SARCHI UID No.115463 and the International Science Programme (ISP)—Uppsala University, Sweeden for research facilities and materials, as well as logistical and financial support during J.T. laboratory stay in the University of Pretoria.

Funding

This work was supported by the Ministry of Education, Science and Technology of Tanzania (MoEST) for a scholarship. In addition, The University of Dar es Salaam—Tanzania, University of Pretoria – South Africa, Materials Science and Solar Energy network for Eastern and Southern Africa (MSSEESA), SARCHI UID No.115463 and the International Science Programme (ISP)—Uppsala University, Sweeden supported the research facilities and materials, as well as logistical and financial support during JJ Tibaijuka laboratory stay in the University of Pretoria.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conceptualization. Sample preparation, data collection and analysis were performed by JJT. JSN was involved in SEM, Raman and XRD characterization. NRM, MD and MES were involved in financial acquisition and supervision of work. The first draft of the manuscript was written by JJT and all authors reviewed and edited on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to J. J. Tibaijuka.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tibaijuka, J.J., Nyarige, J.S., Diale, M. et al. The effects of thermal treatment under argon–oxygen ambient on the microstructure and optical properties of DC sputtered Cr thin films for selective solar absorbers applications. J Mater Sci: Mater Electron 34, 173 (2023). https://doi.org/10.1007/s10854-022-09571-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09571-1

Navigation