Skip to main content
Log in

Growth and characterization of Cu–Ni–Sn–S films electrodeposited at different applied potentials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cu2NiSnS4 (CNTS) absorber layers are elaborated by electrodeposition at various applied potentials followed by sulfurization treatment at 450 °C under sulfur atmosphere. The microstructural investigations revealed the presence of Cu4SnS4 secondary phases which can be reduced using an applied potential of −1.15 V vs. Ag/AgCl. Using the corresponding cathodic potential for Ni2+, the competing detrimental hydrogen evolution regresses the morphology and composition. The film with the highest Ni concentration has a band gap of 1.44 eV as inferred from diffuse reflectance data. The Randles cell model is probed by electrochemical impedance spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Y. Guo, W. Cheng, J. Jiang, S. Zuo, F. Shi, J. Chu, The structural, morphological and optical-electrical characteristic of Cu2XSnS4 (X:Cu,mg) thin films fabricated by novel ultrasonic co-spray pyrolysis. Mater. Lett. 172, 68–71 (2016). https://doi.org/10.1016/j.matlet.2016.02.088

    Article  CAS  Google Scholar 

  2. S.K. M, S.P. Madhusudanan, S.C. Kanth, K. Mohanta, S.K. Batabyal, Solution phase fabrication of photoactive Cu2BaSnS4 thin films for solar energy harvesting. J. Solid State Electrochem. 24, 305–311 (2020). https://doi.org/10.1007/s10008-019-04418-y

    Article  CAS  Google Scholar 

  3. K. Mokurala, S. Mallick, P. Bhargava, Alternative quaternary chalcopyrite sulfides (Cu2FeSnS4 and Cu2CoSnS4) as electrocatalyst materials for counter electrodes in dye-sensitized solar cells. J. Power Sources 305, 134–143 (2016). https://doi.org/10.1016/j.jpowsour.2015.11.081

    Article  CAS  Google Scholar 

  4. M. Rouchdi, E. Salmani, N. Hassanain, A. Mzerd, Effect of deposition time on structural and physical properties of Cu2CdSnS4 thin films prepared by spray pyrolysis technique: experimental and ab initio study. Opt. Quantum Electron. 49, 1–12 (2017). https://doi.org/10.1007/s11082-017-1005-8

    Article  CAS  Google Scholar 

  5. A. Jariwala, T.K. Chaudhuri, S. Patel, A. Toshniwal, V. Kheraj, A. Ray, Direct-coated copper nickel tin sulphide (Cu2NiSnS4) thin films from molecular ink. Mater. Lett. 215, 118–120 (2018). https://doi.org/10.1016/j.matlet.2017.12.083

    Article  CAS  Google Scholar 

  6. O.El Khouja, I. Assahsahi, K. Nouneh, M. Ebn Touhami, M. Secu, A. Talbi, Y. Khaaissa, E. Matei, V. Stancu, A. Galatanu, A.C. Galca, Structural and transport properties of Cu2CoSnS4 films prepared by spray pyrolysis. Ceram. Int. 48, 32418–32426 (2022). https://doi.org/10.1016/j.ceramint.2022.07.185

    Article  CAS  Google Scholar 

  7. P.R. Ghediya, Y.M. Palan, D.P. Bhangadiya, I.I. Nakani, T.K. Chaudhuri, K. Joshi, C.K. Sumesh, J. Ray, Electrical properties of Ag/p-Cu2NiSnS4 thin film Schottky diode. Mater. Today Commun. 28, 102697 (2021). https://doi.org/10.1016/j.mtcomm.2021.102697

    Article  CAS  Google Scholar 

  8. A. Ghosh, A. Biswas, R. Thangavel, G. Udayabhanu, Photo-electrochemical properties and electronic band structure of kesterite copper chalcogenide Cu2-II-Sn-S4 (II = Fe, Co, Ni) thin films. RSC Adv. 6, 96025–96034 (2016). https://doi.org/10.1039/c6ra15700a

    Article  CAS  Google Scholar 

  9. S. Dridi, N. Bitri, M. Abaab, Synthesis of quaternary Cu2NiSnS4 thin films as a solar energy material prepared through «spray» technique. Mater. Lett. 204, 61–64 (2017). https://doi.org/10.1016/j.matlet.2017.06.028

    Article  CAS  Google Scholar 

  10. Y. Xie, C. Zhang, G. Yang, J. Yang, X. Zhou, J. Ma, Highly crystalline stannite-phase Cu2XSnS4(X = mn, Fe, Co, Ni, Zn and Cd) nanoflower counter electrodes for ZnO-based dye-sensitised solar cells. J. Alloy Compd. 696, 938–946 (2017). https://doi.org/10.1016/j.jallcom.2016.12.043

    Article  CAS  Google Scholar 

  11. G.S.D. Babu, X.S. Shajan, S. Alwin, V. Ramasubbu, G.M. Balerao, Effect of reaction period on Stoichiometry, Phase Purity, and morphology of Hydrothermally synthesized Cu2NiSnS4 Nanopowder. J. Electron. Mater. 47, 312–322 (2018). https://doi.org/10.1007/s11664-017-5765-5

    Article  CAS  Google Scholar 

  12. P. Baskaran, K.D. Nisha, S. Harish, R. Ramesh, H. Ikeda, J. Archana, M. Navaneethan, Improved electrochemical performance of Cu2NiSnS4 hierarchical nanostructures as counter electrode in dye sensitized solar cells. Mater. Lett. 307, 130946 (2022). https://doi.org/10.1016/j.matlet.2021.130946

    Article  CAS  Google Scholar 

  13. N. Bitri, S. Dridi, F. Chaabouni, M. Abaab, Studies on the electrical properties of Cu2NiSnS4 thin films prepared by a simple chemical method. Mater. Lett. 213, 31–34 (2018). https://doi.org/10.1016/j.matlet.2017.11.006

    Article  CAS  Google Scholar 

  14. M. Beraich, M. Taibi, A. Guenbour, A. Zarrouk, A. Bellaouchou, M. Fahoume, Synthesis of tetragonal Cu2NiSnS4 thin film via low-cost electrodeposition method: effect of Ni2+ molarity. J. Electron. Mater 49, 728–735 (2020). https://doi.org/10.1007/s11664-019-07707-4

    Article  CAS  Google Scholar 

  15. D. Ait elhaj, A. El kissani, M. Elyaagoubi, H. Ait dads, F. Welatta, L. Nkhaili, H. Chaib, A. Outzourhit, Development of Cu2NiSnS4 based thin film solar cells without a sulfurization step. Mater. Sci. Semicond. Process. 107, 104811 (2020). https://doi.org/10.1016/j.mssp.2019.104811

    Article  CAS  Google Scholar 

  16. H. Toura, Y.H. Khattak, F. Baig, B.M. Soucase, M. Ebn Touhami, B. Hartiti, Effect of complexing agent on the morphology and annealing temperature of CZTS kesterite thin films by electrochemical deposition. Curr. Appl. Phys. 19, 606–613 (2019). https://doi.org/10.1016/j.cap.2019.03.003

    Article  Google Scholar 

  17. H. Kirou, L. Atourki, K. Abouabassi, A. Soltani, A. Almaggoussi, A. Elfanaoui, K. Bouabid, M. Nya, A. Ihlal, Effects of Na2SO4 on the optical and structural properties of Cu2ZnSnS4 thin films synthesized using co-electrodeposition technique. Opt. Mater. 75, 471–482 (2018). https://doi.org/10.1016/j.optmat.2017.11.004

    Article  CAS  Google Scholar 

  18. O.El Khouja, A.C. Galca, K. Nouneh, M.Y. Zaki, M. Ebn Touhami, M. Taibi, E. Matei, C.C. Negrila, M. Enculescu, L. Pintilie, Structural, morphological and optical properties of Cu–Fe–Sn–S thin films prepared by electrodeposition at fixed applied potential. Thin Solid Films. 721, 138547 (2021). https://doi.org/10.1016/j.tsf.2021.138547

    Article  CAS  Google Scholar 

  19. C.L. Yang, Y.H. Chen, M. Lin, S.L. Wu, L. Li, W.C. Liu, X.S. Wu, F.M. Zhang, Structural, optical and magnetic properties of Cu2NiSnS4 thin films deposited by facile one-step electrodeposition. Mater. Lett. 166, 101–104 (2016). https://doi.org/10.1016/j.matlet.2015.12.054

    Article  CAS  Google Scholar 

  20. H.J. Chen, S.W. Fu, T.C. Tsai, C.F. Shih, Quaternary Cu2NiSnS4 thin films as a solar material prepared through electrodeposition. Mater. Lett. 166, 215–218 (2016). https://doi.org/10.1016/j.matlet.2015.12.082

    Article  CAS  Google Scholar 

  21. S. Azmi, M. Nohair, M. El Marrakchi, E.M. Khoumri, M. Dabala, Effect of the complexing agents on the properties of electrodeposited CZTS thin films. 7th Int. IEEE Conf. Renew. Energy Res. Appl. ICRERA 2018 5, 1346–1351 (2018). https://doi.org/10.1109/ICRERA.2018.8566894

    Article  Google Scholar 

  22. M.Y. Zaki, K. Nouneh, M. Ebn Touhami, R.A. Belakhmima, A.C. Galca, L. Pintilie, M. Enculescu, M. Baibarac, M. Taibi, Effect of mixing complexing agents on the properties of electrodeposited CZTS thin films. Opt. Mater. 83, 252–256 (2018). https://doi.org/10.1016/j.optmat.2018.06.030

    Article  CAS  Google Scholar 

  23. O.El Khouja, C.C. Negrila, K. Nouneh, M. Secu, M.Ebn Touhami, E. Matei, V. Stancu, M. Enculescu, V. Kuncser, A.C. Galca, Bulk and surface characteristics of co-electrodeposited Cu2FeSnS4 thin films sulfurized at different annealing temperatures. J. Alloy Compd. 906, 164379 (2022). https://doi.org/10.1016/j.jallcom.2022.164379

    Article  CAS  Google Scholar 

  24. W. Schäfer, R. Nitsche, Tetrahedral quaternary chalcogenides of the type Cu2IIIVS4(Se4). Mater. Res. Bull. 9, 645–654 (1974). https://doi.org/10.1016/0025-5408(74)90135-4

    Article  Google Scholar 

  25. A. Choudhury, S. Mohapatra, H. Yaghoobnejad Asl, S.H. Lee, Y.S. Hor, J.E. Medvedeva, D.L. McClane, G.E. Hilmas, M.A. McGuire, A.F. May, H. Wang, S. Dash, A. Welton, P. Boolchand, K.P. Devlin, J. Aitken, R. Herbst-Irmer, V. Petříček, New insights into the structure, chemistry, and properties of Cu4SnS4. J. Solid State Chem. 253, 192–201 (2017). https://doi.org/10.1016/j.jssc.2017.05.033

    Article  CAS  Google Scholar 

  26. A. Ziti, B. Hartiti, A. Belafhaili, H. Labrim, S. Fadili, A. Ridah, M. Tahri, P. Thevenin, Effect of dip-coating cycle on some physical properties of Cu2NiSnS4 thin films for photovoltaic applications. J. Mater. Sci. -Mater Electron. 32, 16726–16737 (2021). https://doi.org/10.1007/s10854-021-06230-9

    Article  CAS  Google Scholar 

  27. W. Wang, G. Chen, H. Cai, B. Chen, L. Yao, M. Yang, S. Chen, Z. Huang, The effects of SnS2 secondary phases on Cu2ZnSnS4 solar cells: a promising mechanical exfoliation method for its removal. J. Mater. Chem. A 6, 2995–3004 (2018). https://doi.org/10.1039/c7ta08242h

    Article  CAS  Google Scholar 

  28. I.S. Babichuk, M.O. Semenenko, S. Golovynskyi, R. Caballero, O.I. Datsenko, I.V. Babichuk, J. Li, G. Xu, R. Qiu, C. Huang, R. Hu, I. Golovynska, V. Ganus, B. Li, J. Qu, M. Leon, Control of secondary phases and disorder degree in Cu2ZnSnS4 films by sulfurization at varied subatmospheric pressures. Sol. Energy Mater. Sol. Cells. 200, 109915 (2019). https://doi.org/10.1016/j.solmat.2019.109915

    Article  CAS  Google Scholar 

  29. I.S. Babichuk, S. Golovynskyi, V.V. Brus, I.V. Babichuk, O. Datsenko, J. Li, G. Xu, I. Golovynska, O.M. Hreshchuk, I.G. Orletskyi, J. Qu, V.O. Yukhymchuk, P.D. Maryanchuk, Secondary phases in Cu2ZnSnS4 films obtained by spray pyrolysis at different substrate temperatures and Cu contents. Mater. Lett. 216, 173–175 (2018). https://doi.org/10.1016/j.matlet.2018.01.010

    Article  CAS  Google Scholar 

  30. L. Zhu, D. Susac, M. Teo, K.C. Wong, P.C. Wong, R.R. Parsons, D. Bizzotto, K.A.R. Mitchell, S.A. Campbell, Investigation of CoS2-based thin films as model catalysts for the oxygen reduction reaction. J. Catal. 258, 235–242 (2008). https://doi.org/10.1016/j.jcat.2008.06.016

    Article  CAS  Google Scholar 

  31. V. Piacente, S. Foglia, P. Scardala, Sublimation study of the tin sulphides SnS2, Sn2S3 and SnS. J. Alloy Compd. 177, 17–30 (1991). https://doi.org/10.1016/0925-8388(91)90053-X

    Article  CAS  Google Scholar 

  32. A. Weber, R. Mainz, H.W. Schock, On the sn loss from thin films of the material system Cu-Zn-Sn-S in high vacuum. J. Appl. Phys. 107, 013516 (2010). https://doi.org/10.1063/1.3273495

    Article  CAS  Google Scholar 

  33. J. Tao, L. Chen, H. Cao, C. Zhang, J. Liu, Y. Zhang, L. Huang, J. Jiang, P. Yang, J. Chu, Co-electrodeposited Cu2ZnSnS4 thin-film solar cells with over 7% efficiency fabricated via fine-tuning of the Zn content in absorber layers. J. Mater. Chem. A 4, 3798–3805 (2016). https://doi.org/10.1039/c5ta09636g

    Article  CAS  Google Scholar 

  34. O.El Khouja, A.C. Galca, M.Y. Zaki, A. Talbi, H. Ahmoum, K. Nouneh, M. Ebn Touhami, M. Taibi, E. Matei, M. Enculescu, L. Pintilie, Secondary phases and their influence on optical and electrical properties of electrodeposited ­ Cu2FeSnS4 films. Appl. Phys. A-Mater Sci. Process. 127, 887 (2021). https://doi.org/10.1007/s00339-021-05038-y

    Article  CAS  Google Scholar 

  35. A. Agasti, S. Mallick, P. Bhargava, Electrolyte pH dependent controlled growth of co-electrodeposited CZT films for application in CZTS based thin film solar cells. J. Mater. Sci. -Mater Electron. 29, 4065–4074 (2018). https://doi.org/10.1007/s10854-017-8350-z

    Article  CAS  Google Scholar 

  36. D. Avellaneda, M.T.S. Nair, P.K. Nair, Cu[sub2]SnS[sub3] and Cu[sub 4]SnS[sub 4] thin films via chemical deposition for photovoltaic application. J. Electrochem. Soc 157, D346 (2010). https://doi.org/10.1149/1.3384660

    Article  CAS  Google Scholar 

  37. C. Buchmaier, M. Glänzer, A. Torvisco, P. Poelt, K. Wewerka, B. Kunert, K. Gatterer, G. Trimmel, T. Rath, Nickel sulfide thin films and nanocrystals synthesized from nickel xanthate precursors. J. Mater. Sci. 52, 10898–10914 (2017). https://doi.org/10.1007/s10853-017-1265-5

    Article  CAS  Google Scholar 

  38. B. Pandit, D. Dubal, P. Gómez-Romero, B.B. Kale, B.R. Sankapal, V2O5 encapsulated MWCNTs in 2D surface architecture: complete solid-state bendable highly stabilized energy efficient supercapacitor device. Sci. Rep. 7, 43430 (2017). https://doi.org/10.1038/srep43430

    Article  Google Scholar 

  39. P. Pazhamalai, K. Krishnamoorthy, S. Sahoo, V.K. Mariappan, S.J. Kim, Copper tungsten sulfide anchored on Ni-foam as a high-performance binder free negative electrode for asymmetric supercapacitor. J. Chem. Eng. 359, 409–418 (2019). https://doi.org/10.1016/j.cej.2018.11.153

    Article  CAS  Google Scholar 

  40. K. Demir, The investigation of the corrosion behavior of CZTS thin films prepared via electrodeposition. Mater. Sci. Semicond. Process. 123, 105553 (2021). https://doi.org/10.1016/j.mssp.2020.105553

    Article  CAS  Google Scholar 

  41. B.T. Habte, F. Jiang, Effect of microstructure morphology on Li-ion battery graphite anode performance: Electrochemical impedance spectroscopy modeling and analysis. Solid State Ionics 314, 81–91 (2018). https://doi.org/10.1016/j.ssi.2017.11.024

    Article  CAS  Google Scholar 

  42. J. Qi, W. Zhang, R. Xiang, K. Liu, H.Y. Wang, M. Chen, Y. Han, R. Cao, Porous nickel–iron oxide as a highly efficient electrocatalyst for oxygen evolution reaction. Adv. Sci. 2, 1–8 (2015). https://doi.org/10.1002/advs.201500199

    Article  CAS  Google Scholar 

  43. M.Z. Ansari, S. Singh, N. Khare, Visible light active CZTS sensitized CdS/TiO2 tandem photoanode for highly efficient photoelectrochemical hydrogen generation. Sol. Energy. 181, 37–42 (2019). https://doi.org/10.1016/j.solener.2019.01.067

    Article  CAS  Google Scholar 

  44. S. Chen, A. Xu, J. Tao, H. Tao, Y. Shen, L. Zhu, J. Jiang, T. Wang, L. Pan, In situ and green method to prepare Pt-free Cu2ZnSnS4 (CZTS) counter electrodes for efficient and low cost dye-sensitized solar cells. ACS Sustain. Chem. Eng. 3, 2652–2659 (2015). https://doi.org/10.1021/acssuschemeng.5b00585

    Article  CAS  Google Scholar 

  45. E. Indubala, S. Sarveshvaran, V. Sudha, A.Y. Mamajiwala, S. Harinipriya, Secondary phases and temperature effect on the synthesis and sulfurization of CZTS. Sol. Energy 173, 215–224 (2018). https://doi.org/10.1016/j.solener.2018.07.085

    Article  CAS  Google Scholar 

  46. Y. Bao, Y. Yan, J. Zhang, J. Ma, W. Zhang, C. Liu, Effect of the feeding mode of cross-linker and microcapsule on the corrosion resistance and hydrophobicity of composite coatings. Arab. J. Chem. 13, 9068–9080 (2020). https://doi.org/10.1016/j.arabjc.2020.10.029

    Article  CAS  Google Scholar 

  47. Z. Rajabalizadeh, D. Seifzadeh, Application of electroless Ni-P coating on magnesium alloy via CrO3/HF free titanate pretreatment. Appl. Surf. Sci. 422, 696–709 (2017). https://doi.org/10.1016/j.apsusc.2017.06.100

    Article  CAS  Google Scholar 

  48. H.D. Shelke, A.C. Lokhande, J.H. Kim, C.D. Lokhande, Influence of deposition temperature on the structural, morphological, optical and photoelectrochemical properties of CBD deposited Cu2SnS3 thin films. J. Alloy Compd. 831, 154768 (2020). https://doi.org/10.1016/j.jallcom.2020.154768

    Article  CAS  Google Scholar 

  49. A.M.H.S. Magar, R.Y.A. Hassan, Electrochemical impedance spectroscopy (EIS): principles, construction, and biosensing applications. Sensors 21, 6578 (2021). https://doi.org/10.3390/s21196578

    Article  CAS  Google Scholar 

Download references

Acknowledgements

O.E.K. acknowledges the receipt of the OEA grant AF-15/20 -01 from the Abdus Salam International Center for Theoretical Physics, Trieste, Italy. All authors acknowledge the funding from Moroccan Ministry of Higher Education and Research and Centre National pour la Recherche Scientifique et Technique in the framework of PPR/37/2015 project and from Romanian Government trough the Core Program PN19-03 (contract no. 21 N/ 08.02.2019) and PN-III-P4-ID-PCE-2020-0827 (Contract no. PCE74 09/02/2021) project.

Funding

This study is supported by the Moroccan Ministry of Higher Education and Research and Centre National pour la Recherche Scientifique et Technique in the framework of PPR/37/2015 project and from Romanian Government trough the Core Program PN19-03 (contract no. 21 N/ 08.02.2019) and PN-III-P4-ID-PCE-2020-0827 (Contract no. PCE74 09/02/2021) project.

Author information

Authors and Affiliations

Authors

Contributions

OEK contributed to conceptualization, formal analysis, investigation, project administration, validation, visualization, writing of the original draft, writing, reviewing, & editing of the manuscript. KN contributed to conceptualization, supervision, funding acquisition, methodology, and validation. MET contributed to conceptualization, supervision, funding acquisition, and resources. EM contributed to funding acquisition, investigation, and resources. VS contributed to investigation, validation, and resources. ME contributed to data curation, investigation, and validation. ACG contributed to conceptualization, formal analysis, investigation, methodology, project administration, supervision, validation, visualization, writing of the original draft, and writing, reviewing, & editing of the manuscript. All authors commented on previous versions of the manuscript, read, and then approved the final manuscript.

Corresponding authors

Correspondence to Khalid Nouneh or Aurelian Catalin Galca.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

The authors declare that principles of ethical and professional conduct have been followed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Khouja, O., Nouneh, K., Ebn Touhami, M. et al. Growth and characterization of Cu–Ni–Sn–S films electrodeposited at different applied potentials. J Mater Sci: Mater Electron 34, 760 (2023). https://doi.org/10.1007/s10854-023-10173-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10173-8

Navigation