Skip to main content
Log in

Structural, topological, dielectric, and electrical properties of a novel calcium bismuth tungstate ceramic for some device applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This article describes the characterization (structural, topological, dielectric, and electrical properties) of a lead-free complex perovskite Ca3Bi2WO9 (CBWO) prepared by a solid-state reaction method. The room-temperature X-ray structural analysis of the material suggests crystallization of the material in monoclinic crystal symmetry with average crystallite size and lattice strain of 73.29 nm and 0.0023, respectively. Studies of microstructural and compositional properties of the sample using scanning electron microscopy (SEM) and EDX (energy-dispersive analysis X-ray) revealed the good quality of the sample (uniformity and compactness of grains and grain boundary). A careful examination of the temperature and frequency dependence of the impedance, dielectric, and ac conductivity characteristics of the material shows the existence of large dielectric dispersion, relaxation mechanisms, and a non-Debye type of conduction mechanism in it. The diminishing of resistance or radius of semicircular arcs in Nyquist plots and impedance analysis show the semiconductor behavior of the material. Fitted parameters obtained using ZSIMPWIN software also support this nature. The nature of field-dependent polarization [hysteresis loops (PE)] shows that ferroelectricity may exist in the sample. The negative temperature coefficient of resistance (NTCR) character, which applies to NTC thermistor application, is shown by calculating the temperature coefficient of resistance (TCR) and thermistor constant (β).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The author can provide the data in the paper upon reasonable request.

Code availability

The author can provide the data in the paper upon reasonable request.

References

  1. B.V. Antohe, D.B. Wallace, Acoustic phenomena in a demand mode piezoelectric ink jet printer. J. Imag. Sci. Technol. 46, 409–414 (2002)

    CAS  Google Scholar 

  2. Irinela Chilibon, Jose N. Marat-Mendes, Ferroelectric ceramics by sol–gel methods and applications: a review, J. Sol. Gel Sci. Technol. (2012) 64571–64611. Doi: https://doi.org/10.1007/s10971-012-2891-7.

  3. T.C. Mike Chung, A. Petchsuk, Polymers, Ferroelectric, Encyclopedia of Physical Science and Technology (Third Edition),Academic Press,(2003), 659–674,ISBN 9780122274107, https://doi.org/10.1016/B0-12-227410-5/00594-9.

  4. Zenghui Liu, Hua Wu, Wei Ren, Zuo-Guang Ye, Piezoelectric and ferroelectric materials: Fundamentals, recent progress, and applications, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier, 2022, ISBN 9780124095472, https://doi.org/10.1016/B978-0-12-823144-9.00069-8.

  5. F. Wang, Q. Liu, L. Yu, Y. Wang, Multi-data source-based recycling value estimation of wasted domestic electrical storage water heater in China. Waste Manage. 140, 63–73 (2022)

    Article  Google Scholar 

  6. K.R. Kendall, C. Navas, J.K. Thomas, H.C. Zur, Loye, Recent Developments in Oxide Ion Conductors: Aurivillius Phases. Chem. Mater. 8, 642–649 (1996). https://doi.org/10.1021/cm9503083

    Article  CAS  Google Scholar 

  7. S. Zhang, B. Malič, J.F. Li et al., Lead-free ferroelectric materials: Prospective applications. J. Mater. Res. 36, 985–995 (2021). https://doi.org/10.1557/s43578-021-00180-y

    Article  CAS  Google Scholar 

  8. Moure, Alberto. 2018. "Review and Perspectives of Aurivillius Structures as a Lead-Free Piezoelectric System" Applied Sciences 8, no. 1: 62. https://doi.org/10.3390/app8010062.

  9. B. Aurivillius Mixed bismuth oxides with layer lattices Ark. Kemi, 1 (1949), pp. 499–506.

  10. Zhen Zhang, Haixue Yan, Xianlin Dong, Yongling Wang, Preparation and electrical properties of bismuth layer-structured ceramic Bi3NbTiO9 solid solution, Materials Research Bulletin, 38, Issue 2(2003) 241–248,ISSN 0025–5408,https://doi.org/10.1016/S0025-5408(02)01032-2.

  11. C.A.P. de Araujo, J.D. Cuchaiaro, L.D. McMillan, “M.C. Scott and J.F. Scott”, Nature 374 (1995) 627.

  12. Tao, Q., Xu, P., Li, M. et al. Machine learning for perovskite materials design and discovery. npj Comput Mater 7, 23 (2021). https://doi.org/10.1038/s41524-021-00495-8.

  13. B. Sun, G. Zhou, L. Sun, H. Zhao, Y. Chen, F. Yang, Y. Zhao, Q. Song, ABO3 multiferroic perovskite materials for memristive memory and neuromorphic computing. Nanoscale Horizons 6(12), 939–970 (2021). https://doi.org/10.1039/D1NH00292A

    Article  CAS  Google Scholar 

  14. Roger H. Mitchell, Mark D. Welch, Anton R. Chakhmouradian, Nomenclature of the perovskite supergroup: a hierarchical system of classification based on crystal structure and composition, Mineral. Mag. 81 (2017) 411–461.https://doi.org/10.1180/minmag.2016.080.156.

  15. T. Křenek, T. Kovářík, J. Pola, T. Stich, D. Docheva, Nano and micro-forms of calcium titanate: Synthesis, properties and application, Open Ceramics,8 (2021) 100177, https://doi.org/10.1016/j.oceram.2021.100177.

  16. O. Sahnoun, H. Bouhani-Benziane, M. Sahnoun, M. Driz, C. Daul, Ab initio study of structural, electronic and thermodynamic properties of tungstate double perovskites Ba2MWO6 (M = Mg, Ni, Zn). Comput. Mater. Sci. 77, 316–321 (2013). https://doi.org/10.1016/j.commatsci.2013.04.053

    Article  CAS  Google Scholar 

  17. L. Chu, W. Ahmad, W. Liu et al., Lead-Free Halide Double Perovskite Materials: A New Superstar Toward Green and Stable Optoelectronic Applications. Nano-Micro Lett. 11, 16 (2019). https://doi.org/10.1007/s40820-019-0244-6

    Article  Google Scholar 

  18. M. Kobayashi, M. Ishiib, K. Haradab, Y. Uski, H. Okuno, H. Shimizu, T. Yazawab, Scintillation and phosphorescence of PbWO4 crystals, Nucl. Instrum. Methods, A 373 (1996) 333–346. https://doi.org/10.1016/0168-9002 (95)01480–2.

  19. L.S. Cavalcante, J.C. Sczancoski, J.W.M. Espinosa, J.A. Varela, P.S. Pizani, E. Longo, Photoluminescent behavior of BaWO4 powders processed in microwavehydrothermal. J. Alloys Compd. 474, 195–200 (2009). https://doi.org/10.1016/j.jallcom.2008.06.049

    Article  CAS  Google Scholar 

  20. R. Dhilip Kumar, S. Karuppuchamy, Microwave-assisted synthesis of copper tungstate nanopowder for supercapacitor applications, Ceram. Int. 40 (2014) 12397–12402. https://doi.org/10.1016/j.ceramint.2014.04.090.

  21. J. Zhang, J. Pan, L. Shao, J. Shu, M. Zhou, J. Pan, Micro-sized cadmium tungstate as a high-performance anode material for lithium-ion batteries. J. Alloys Compd. 614, 249–252 (2014). https://doi.org/10.1016/j.jallcom.2014.06.119

    Article  CAS  Google Scholar 

  22. C. Anil Kumar, D. Pamu, Dielectric and electrical properties of BaWO4 film capacitors deposited by RF magnetron sputtering, Ceram. Int. 41 (2015) S296–S302. https://doi.org/10.1016/j.ceramint.2015.03.130.

  23. C. Shivakumara, R. Saraf, S. Behera, N. Dhananjaya, H. Nagabhushana, Scheelitetype MWO4 (M = Ca, Sr, and Ba) nanophosphors: facile synthesis, structural characterization, photoluminescence, and photocatalytic properties. Mater. Res. Bull. 61, 422–432 (2015). https://doi.org/10.1016/j.materresbull.2014.09.096

    Article  CAS  Google Scholar 

  24. G. A. Smolensky, V. A. Bokov, V. A. Isupov, N. N. Krainik, R. E. Pasinkov, A. I. Sokolov, and N. K. Jushin, The Physics of ferroelectric phenomena. Leningrad: Science (1995) 360 p. (In Russian).

  25. P. Durán-Martín, A. Castro, P. Millán, B. Jiménez, Influence of Bi-site Substitution on the Ferroelectricity of the Aurivillius Compound Bi2SrNb2O9. J. Mater. Res. 13(9), 2565–2571 (1998). https://doi.org/10.1557/JMR.1998.0358

    Article  Google Scholar 

  26. S.M. Blake, M.J. Falconer, M. McCreedy, P. Lightfoot, Cation disorder in ferroelectric Aurivillius phases of the type Bi2ANb2O9(A=Ba, Sr, Ca). J. Mater. Chem. 7(8), 1609–1613 (1997). https://doi.org/10.1039/A608059F

    Article  CAS  Google Scholar 

  27. Jae-Hyun Park, Patrick M. Woodward, Synthesis, structure and optical properties of two new Perovskites: Ba2Bi2/3TeO6 and Ba3Bi2TeO9, International Journal of Inorganic Materials 2, no. 1 (2000) 153–166 https://doi.org/10.1016/S1466-6049(99) 00071–9.

  28. A. Moure, L. Pardo, Microstructure and texture dependence of the dielectric anomalies and dc conductivity of Bi3TiNbO9Bi3TiNbO9 ferroelectric ceramics, Journal of Applied Physics 97, (2005) 084103; https://doi.org/10.1063/1.1865313.

  29. Y. Wang,Y. Sui, P. Ren, Wang, L. Wang, X. Wang, Su Wenhui, and Hongjin Fan, Strongly correlated properties and enhanced thermoelectric response in Ca3Co4− x M x O9 (M= Fe, Mn, and Cu) Chemistry of Materials 22(3) 2010 pp.1155–1163 https://doi.org/10.1021/cm902483a.

  30. X. Xie, Z. Zhou, T. Chena, R. Liang, X. Dong, Enhanced electrical properties of NaBi modified CaBi2Nb2O9-based Aurivillius piezoceramics via structural distortion. Ceram. Int. 45, 5425–5430 (2019). https://doi.org/10.1016/j.ceramint.2018.11.244

    Article  CAS  Google Scholar 

  31. Hepeng Wang, Xiangping Jiang, Chao Chen, Xiaokun Huang, Xin Nie, Li Yang, Wenying Fan, Shaotian Jie, Hui Wang, Structure and electrical properties of Ce-modified Ca1-xCexBi2Nb1.75(Cu0.25W0.75)0.25O9 high Curie point piezoelectric ceramics, Ceramics International, 46 (2022) 1723–1730 https://doi.org/10.1016/j.ceramint.2021.09.251.

  32. A. Altomare, C. Cuocci, C. Giacovazzo, A. Moliterni, R. Rizzi, N. Corriero, A. Falcicchio, J. Appl. Cryst. 46, 1231–1235 (2013)

    Article  CAS  Google Scholar 

  33. Rajanikanta Parida Parida, Bichitrananda Parida, Ranjan Kumar Bhuyan, Santosh Kumar Parida, Structural, mechanical and electric properties of La doped BNT-BFO perovskite ceramics. Ferroelectrics 571, 162–174 (2021). https://doi.org/10.1080/00150193.2020.1853751

    Article  CAS  Google Scholar 

  34. F Marinello and A Pezzuolo 2019 IOP Conf. Ser.: Earth Environ. Sci. 275 012011.

  35. Rovani, A. C., Kouketsu, F., da Silva, C. H., &Pintaude, G. (2018). Surface characterization of three-layer organic coating applied on AISI 4130 steel. Advances in Materials Science and Engineering, 2018.

  36. Yuwei Huang, Kangning Wu, Zhaoliang Xing, Chong Zhang, Xiangnan Hu, Panhui Guo, Jingyuan Zhang, Jianying Li, Understanding the validity of impedance and modulus spectroscopy on exploring electrical heterogeneity in dielectric ceramics, Journal of Applied Physics (2019), 125 (8), 084103. https://doi.org/10.1063/1.5081842.

  37. S.S. Ashima, Ashish Agarwal, Reetu, Neetu Ahlawat, Monica, Structure refinement and dielectric relaxation of M-type Ba, Sr, Ba-Sr, and Ba-Pb hexaferrite. J. Appl. Phys. 112, 14110–14115 (2012). https://doi.org/10.1063/1.4734002

    Article  CAS  Google Scholar 

  38. Wu, K., Huang, Y., Li, J. and Li, S., 2017. Space charge polarization modulated instability of low frequency permittivity in CaCu3Ti4O12 ceramics. Applied Physics Letters, 111(4), p.042902. https://doi.org/10.1063/1.4995968.

  39. S.K. Parida, R.N.P. Choudhary, Preparation method and cerium dopant effects on the properties of BaMnO3 single perovskite. Phase Transitions 93, 981–991 (2020). https://doi.org/10.1080/01411594.2020.1817451

    Article  CAS  Google Scholar 

  40. J. Liu, C.G. Duan, W.N. Mei, R.W. Smith, J.R. Hardy, Dielectric properties and Maxwell-Wagner relaxation of compounds ACu3Ti4O12 (A= Ca, Bi2/3, Y2/3, La2/3). J. Appl. Phys. 98, 093703 (2005)

    Article  Google Scholar 

  41. I. Ahmad, M.J. Akhtar, M. Younas, M. Siddique, M.M. Hasan, Small polaronic hole hopping mechanism and Maxwell-Wagner relaxation in NdFeO3. J. Appl. Phys. 112, 074105 (2012)

    Article  Google Scholar 

  42. A. Karmakar, S. Majumdar, A.K. Singh, S. Giri, Intragrain electrical inhomogeneities and compositional variation of static dielectric constant in LaMn1–xFexO3. J. Phys. D Appl. Phys. 42, 092004 (2009)

    Article  Google Scholar 

  43. Y. Leyet, F. Guerrero, J.P. de la Cruz, Relaxation dynamics of the conductive processes in BaTiO3 ceramics at high-temperature. Mater. Sci. Eng. B. 171, 127–132 (2010)

    Article  CAS  Google Scholar 

  44. M. Amin, H.M. Rafique, M. Yousaf, S.M. Ramay, S. Atiq, Structural and impedance spectroscopic analysis of Sr/Mn modified BiFeO3 multiferroics. J. Mater. Sci. 27, 11003–11011 (2016). https://doi.org/10.1007/s10854-016-5216-8

    Article  CAS  Google Scholar 

  45. Dhiren K. Pradhan, Shalini Kumari, Venkata S. Puli, Proloy T. Das, Dilip K. Pradhan, Ashok Kumar, J.F. Scott, Ram S. Katiyar, Correlation of dielectric, electrical and magnetic properties near the magnetic phase transition temperature of cobalt zinc ferrite, Phys. Chem. Chem. Phys. 19 (2017) 210–216. https://doi.org/10.1039/C6CP06133H.

  46. J. Ross Macdonald, Comparison of the universal dynamic response power-law fitting model for conducting systems with superior alternative models, Solid State Ionics 133 (2000) 79–97 https://doi.org/10.1016/S0167-2738(00)00737-2.

  47. R. Kumari, N. Ahlawat, A. Agarwal, S. Sanghi, M. Sindhu, N. Ahlawat, Phase transformation and impedance spectroscopic study of Ba substituted Na0.5Bi0.5TiO3 ceramics, J. Alloys Compd. 676 (2016) 452–460 https://doi.org/10.1016/j.jallcom.2016.03.088.

  48. Subrat Kumar Barik, Suhel Ahmed, Sugato Hajra, Studies of dielectric relaxation and impedance analysis of new electronic material: (Sb1/2Na1/2)(Fe2/3Mo1/3)O3. Appl. Phys. A 125, 200–208 (2019). https://doi.org/10.1007/s00339-019-2496-x

    Article  CAS  Google Scholar 

  49. M. Yildirim, A. Kocyigit, A systematic study on the dielectric relaxation, electric modulus and electrical conductivity of Al/Cu: tiO2=N-Si (Mos) structures/capacitors. Surface Rev. Lett. 27, 1950217–1950312 (2020). https://doi.org/10.1142/S0218625X19502172

    Article  CAS  Google Scholar 

  50. B. Panda, K.L. Routray, D. Behera, Studies on conduction mechanism and dielectric properties of the nano-sized La0.7Ca0.3MnO3 (LCMO) grains in the paramagnetic state. Physica B Condens. Matter 583, 411967 (2020)

  51. K. Funke, Jump relaxation in solid electrolytes. Prog. Solid. State Ch. 22, 111–195 (1993)

    Article  CAS  Google Scholar 

  52. D.C. Sinclair, A.R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys. 66, 3850–3856 (1989). https://doi.org/10.1063/1.344049

    Article  CAS  Google Scholar 

  53. Ben Taher, Y., A. Oueslati, N. K. Maaloul, K. Khirouni, and M. Gargouri. "Conductivity study and correlated barrier hopping (CBH) conduction mechanism in diphosphate compound." Applied Physics A 120 (2015): 1537–1543.

  54. S.R. ElliotAdv, Phys. 36, 135 (1987)

    Google Scholar 

  55. A. GhoshPhys, Rev. B 41, 1479 (1990)

    Article  Google Scholar 

  56. S. Hajlaoui, I. Chaabane, K. Guidara, Conduction mechanism model, impedance spectroscopic investigation and modulus behavior of the organic-inorganic [(C3H7)4 N][SnCl5(H2O)]•2H2O compound. RSC Adv. 6, 91649–91657 (2016)

    Article  CAS  Google Scholar 

  57. Stumpe, R., Wagner, D. and Bäuerle, D., 1983. Influence of bulk and interface properties on the electric transport in ABO3 perovskites. physica status solidi (a)75(1), pp.143–154.

  58. T. Md, M. Rahman, C.V. Vargas, Ramana, structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite. J. Alloys Compd. 617, 547–562 (2014). https://doi.org/10.1016/j.jallcom.2014.07.182

    Article  CAS  Google Scholar 

  59. K. Parida, S.K. Dehury, R.N.P. Choudhary, Structural, electrical and magnetoelectric characteristics of BiMgFeCeO6 ceramics. Phys. Lett. 380, 4083–4091 (2016). https://doi.org/10.1016/j.physleta.2016.10.022

    Article  CAS  Google Scholar 

  60. P. Ganga Raju Achary, R.N.P. Choudhary, S.K. Parida, Investigation of structural and dielectric properties in polycrystalline PbMg1/3 Ti1/3W1/3O3 tungsten perovskite, Spin 10 (2020), 2050021–10.

  61. D.L. Rocco, A.A. Coelho, S. Gama, M. de C. Santos, Dependence of the magnetocaloric effect on the A-site ionic radius in isoelectronic manganites, J. Appl. Phys. 113 (2013), 113907 https://doi.org/10.1063/1.4795769.

  62. P. Gogoi, P. Srinivas, P. Sharma, D. Pamu, Optical, dielectric characterization and impedance spectroscopy of Ni-substituted MgTiO3 thin films. J. Electron. Mater. 45, 899–909 (2016). https://doi.org/10.1007/s11664-015-4209-3

    Article  CAS  Google Scholar 

  63. I. Coondoo, N. Panwar, A. Tomar, A.K. Jha, S.K. Agarwal, Impedance spectroscopy and conductivity studies in SrBi2(Ta1-xWx)2O9 ferroelectric ceramics. Phys. B 407, 4712–4720 (2012). https://doi.org/10.1016/j.physb.2012.09.024

    Article  CAS  Google Scholar 

  64. H. Saghrouni, S. Jomni, W. Belgacem, N. Hamdaoui, L. Beji, Physical and electrical characteristics of metal/Dy2O3/p-GaAs structure. Phys. B 444, 58–64 (2014). https://doi.org/10.1016/j.physb.2014.03.030

    Article  CAS  Google Scholar 

  65. F.S. Moghadasi, V. Daadmehr, M. Kashf, Characterization and the frequencythermal response of electrical properties of Cu nano ferrite prepared by sol-gel method. J. Magn. Magn Mater. 416, 103–109 (2016). https://doi.org/10.1016/j.jmmm.2016.05.012

    Article  CAS  Google Scholar 

  66. T.P. Bharti, Sinha, Solid. Stat Sci. 12, 498 (2010)

    Article  CAS  Google Scholar 

  67. T.P. Dutta, Sinha. Phys. B 405, 1475 (2010)

    Article  CAS  Google Scholar 

  68. MBakr Mohamed, H. Wang, H. Fuess. Phys D: Appl. Phys. 43 (2010) 409–455.

  69. E. Omri, M. Dhahri, L.C.C. Es-Souni, J. Alloys Compd. 497, 173 (2012)

    Article  Google Scholar 

  70. R. Ranjan, R. Kumar, N. Kumar, B. Behera, R.N.P. Choudhary, J. Alloys Compd. 509, 6388 (2011)

    Article  CAS  Google Scholar 

  71. S. Pattanayak, B. Parida, P.R. Das, R.N.P. Choudhary, Impedance spectroscopy of Gd-doped BiFeO3 multiferroics. Appl. Phys. A 112, 387–395 (2013). https://doi.org/10.1007/s00339-012-7412-6

    Article  CAS  Google Scholar 

  72. W. Hzez, H. Rahmouni, E. Dhahri, K. Khirouni, J. Alloys Compd. 725, 348 (2017)

    Article  Google Scholar 

  73. E. Barsoukov, J. Ross Macdonald, Impedance Spectroscopy Theory, Experiment and Applications, second ed., Wiley Interscience, New York. (2005).

  74. J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, Chemphys 119, 2812 (2003)

    CAS  Google Scholar 

  75. S.A. Jawad, A.S. Abu-Surrah, M. Maghrabi, Z. Khattari, Electric impedance study of elastic alternating propylene–carbon monoxide copolymer (PCO-200). Phys. B 406, 2565–2569 (2011). https://doi.org/10.1016/j.physb.2011.03.069

    Article  CAS  Google Scholar 

  76. P. Ganga Raju Achary, R.N.P. Choudhary, S.K. Parida, Structure, electric and dielectric properties of PbFe1/3Ti1/3W1/3O3 single perovskite compound, Process. Appl. Ceram. 14 (2020) 146–153 https://doi.org/10.2298/PAC2002146A.

  77. M. Anjidania, H.M. Moghaddama, R. Ojani, Binder-free MWCNT/TiO2 multilayer nanocomposite as an efficient thin interfacial layer for photoanode of the dyesensitized solar cell. Mater. Sci. Semicond. Process. 71, 20–28 (2017). https://doi.org/10.1016/j.mssp.2017.05.036

    Article  CAS  Google Scholar 

  78. F. Aziza, N. Gupta, G.G. Sonic, K.K. Kushwah, Contrasting effects of mismatch strain on the magnetic behavior of undoped and doped BaFeO3-δ thin films. J. Magn. Magn Mater. 517, 167338–167347 (2021). https://doi.org/10.1016/j.jmmm.2020.167338

    Article  CAS  Google Scholar 

  79. W. Yang, S. Yu, R. Sun, S. Ke, H. Huang, R. Du, Electrical modulus analysis on the Ni/CCTO/PVDF system near the percolation threshold. J. Phys. D Appl. Phys. 44, 475305–475314 (2011). https://doi.org/10.1088/0022-3727/44/47/475305

    Article  CAS  Google Scholar 

  80. D.K. Pradhan, R.N.P. Choudhary, C. Rinaldi, R.S. Katiyar, Effect of Mn substitution on electrical and magnetic properties of Bi0.9La0.1FeO3, J. Appl. Phys. 106 (2009) 24102–24106 https://doi.org/10.1063/1.3158121.

  81. B.K. Barick, K.K. Mishra, A.K. Arora, R.N.P. Choudhary, D.K. Pradhan, Impedance and Raman spectroscopic studies of (Na0.5Bi0.5)TiO3, J. Phys. D 44 (2011) 355402–355410 https://doi.org/10.1088/0022-3727/44/35/355402.

  82. S. Thakur, R. Rai, I. Bdikin, M.A. Valente, Impedance and modulus spectroscopy characterization of Tb modified Bi0.8A0.1Pb0.1Fe0.9Ti0.1O3 ceramics, Mater. Res. 19 (2016) 1–8 https://doi.org/10.1590/1980-5373-MR-2015-0504.

  83. M. Selvasekarapandian, Vijaykumar, The ac impedance spectroscopy studies on LiDyO2 Mater. Chem. Phys. 80, 29–33 (2003). https://doi.org/10.1016/S0254-0584(02)00510-2

    Article  CAS  Google Scholar 

  84. Ajeet Kumar, K.C.James Raju, Jungho Ryu, A.R. James; Composition dependent Ferropiezo hysteresis loops and energy density properties of mechanically activated (Pb1−xLax) (Zr0.60Ti0.40)O3 ceramics, Appl. Phys. A 126 (2020) 1–10 https://doi.org/10.1007/s00339-020-3356-4.

  85. C.C. Wang, S.A. Akbar, W. Chen, J.R. Schorr, High-temperature thermistors based on yttria and calcium zirconate. Sensor. Actuator. A 58, 237–243 (1997)

    Article  CAS  Google Scholar 

  86. J. Zhao, L. Li, Z. Gui, Influence of lithium modification on the properties of Y doped Sr0.5Pb0.5TiO3 thermistors, Sens. Actuators, A 95 (2001) 46–50.

  87. S. Sahoo, Negative temperature coefficient resistance of CaTiO3 for thermistor application. Trans. Electr. Electron. Mater. 21, 91–98 (2020)

    Article  Google Scholar 

  88. S. Sahoo, S.K.S. Parashar, S.M. Ali, CaTiO3 nano ceramic for NTCR thermistor-based sensor application. Journal of Advanced Ceramics 3(2), 117–124 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude and heartfelt appreciation to our host Institute for providing XRD characterization, as well as Revenshaw University in India for the SEM investigation.

Funding

There is no financial support for this research work.

Author information

Authors and Affiliations

Authors

Contributions

SSH: data collection, writing—original draft. DP—software, validation. RNPC: supervision, methodology, review, editing, visualization.

Corresponding author

Correspondence to Debasish Panda.

Ethics declarations

Conflict of interest

The authors attest that no known financial conflicts of interest or close personal links appear to have impacted the research provided in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hota, S.S., Panda, D. & Choudhary, R.N.P. Structural, topological, dielectric, and electrical properties of a novel calcium bismuth tungstate ceramic for some device applications. J Mater Sci: Mater Electron 34, 900 (2023). https://doi.org/10.1007/s10854-023-10240-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10240-0

Navigation