Skip to main content
Log in

Partial replacement of Pb2+ in MAPbI2.6Cl0.4 perovskite films and their photovoltaic performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Replacing lead atoms in halide perovskite materials is of significant importance for the development of environmentally friendly perovskite solar cells. In this paper, we investigated the effect of doping the MAPbI2.6Cl0.4 hybrid perovskite (MA—methyl ammonium) with non-toxic elements, such as alkaline earth metal ions (Mg2+) and transition metal ions (Zn2+). The structural, morphological, and optical properties of the prepared samples were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and UV–Vis. spectroscopy. Finally, the doped films were used as photoactive layers in solar devices in order to evaluate their photovoltaic performance. Zn proved to be more appropriate to replace partially Pb and films with higher quality were obtained. As a result, the MAPb1xZnxI2.6Cl0.4 based solar cells have demonstrated a slight improvement of the photovoltaic performances, resulting in a uniform and narrower PCEs (power conversion efficiency) range, compared to pristine MAPbI2.6Cl0.4 based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author upon reasonable request.

References

  1. J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, Nanoscale 3, 4088–4093 (2011)

    Article  CAS  Google Scholar 

  2. T.C. Sum, N. Mathews, Energy Environ. Sci. 7, 2518–2534 (2014)

    Article  CAS  Google Scholar 

  3. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Science 347, 967–970 (2015)

    Article  CAS  Google Scholar 

  4. Z. Zhang, M. Wang, L. Ren, K. Jin, Sci Rep 2017, 7 (1918)

    Google Scholar 

  5. Best Research-Cell Efficiency Chart, https://www.nrel.gov/pv/cell-efficiency.html, (Accessed May 21, 2021).

  6. A.B. Djurišić, F.Z. Liu, H.W. Tam, M.K. Wong, A. Ng, C. Surya, W. Chen, Z.B. He, Prog. Quantum Electron. 53, 1–37 (2017)

    Article  Google Scholar 

  7. M.V. Khenkin, E.A. Katz, A. Abate, G. Bardizza, J.J. Berry, C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo, R. Cheacharoen, Y.-B. Cheng, A. Colsmann, S. Cros, K. Domanski, M. Dusza, C.J. Fell, S.R. Forrest, Y. Galagan, D. Di Girolamo, M. Grätzel, A. Hagfeldt, E. von Hauff, H. Hoppe, J. Kettle, H. Köbler, M.S. Leite, S. Liu, Y.-L. Loo, J.M. Luther, C.-Q. Ma, M. Madsen, M. Manceau, M. Matheron, M. McGehee, R. Meitzner, M.K. Nazeeruddin, A.F. Nogueira, Ç. Odabaşı, A. Osherov, N.-G. Park, M.O. Reese, F. De Rossi, M. Saliba, U.S. Schubert, H.J. Snaith, S.D. Stranks, W. Tress, P.A. Troshin, V. Turkovic, S. Veenstra, I. Visoly-Fisher, A. Walsh, T. Watson, H. Xie, R. Yıldırım, S.M. Zakeeruddin, K. Zhu, M. Lira-Cantu, Nat. Energy 5, 35–49 (2020)

    Article  Google Scholar 

  8. W. Chi, S.K. Banerjee, Chem. Mater. 33, 1540–1570 (2021)

    Article  CAS  Google Scholar 

  9. S. Derbali, K. Nouneh, M. Florea, L.N. Leonat, V. Stancu, A.G. Tomulescu, A.C. Galca, M. Secu, L. Pintilie, M.E. Touhami, J. Alloy Compd. 858, 158335 (2021)

    Article  CAS  Google Scholar 

  10. A.G. Tomulescu, L.N. Leonat, F. Neatu, V. Stancu, V. Toma, S. Derbali, S NeaTu, A.M. Rostas, C. Besleagă, R. Pătru, I. Pintilie, Sol. Energy Mater. Sol. Cells 227, 111096 (2021)

    Article  Google Scholar 

  11. T. Zhu, Y. Yang, K. Gu, C. Liu, J. Zheng, X. Gong, A.C.S. Appl, Mater. Interfaces 12, 51744–51755 (2020)

    Article  CAS  Google Scholar 

  12. S. Kundu, T.L. Kelly, EcoMat 2, e12025 (2020)

    Article  CAS  Google Scholar 

  13. E.J. Juarez-Perez, L.K. Ono, M. Maeda, Y. Jiang, Z. Hawash, Y. Qi, J. Mater. Chem. A 6, 9604–9612 (2018)

    Article  CAS  Google Scholar 

  14. L. Ma, D. Guo, M. Li, C. Wang, Z. Zhou, X. Zhao, F. Zhang, Z. Ao, Z. Nie, Chem. Mater. 31, 8515–8522 (2019)

    Article  CAS  Google Scholar 

  15. D. Fabini, J. Phys. Chem. Lett. 6, 3546–3548 (2015)

    Article  CAS  Google Scholar 

  16. R. Kour, S. Arya, S. Verma, J. Gupta, P. Bandhoria, V. Bharti, R. Datt, V. Gupta, Glob. Challenge 3, 1900050 (2019)

    Article  Google Scholar 

  17. Z. Zhao, F. Gu, Y. Li, W. Sun, S. Ye, H. Rao, Z. Liu, Z. Bian, C. Huang, Adv. Sci. 4, 1700204 (2017)

    Article  Google Scholar 

  18. T. Krishnamoorthy, H. Ding, C. Yan, W.L. Leong, T. Baikie, Z. Zhang, M. Sherburne, S. Li, M. Asta, N. Mathews, S.G. Mhaisalkar, J. Mater. Chem. A 3, 23829–23832 (2015)

    Article  CAS  Google Scholar 

  19. Y. Zhou, J. Chen, O.M. Bakr, H.-T. Sun, Chem. Mater. 30, 6589–6613 (2018)

    Article  CAS  Google Scholar 

  20. L.A. Frolova, D.V. Anokhin, K.L. Gerasimov, N.N. Dremova, P.A. Troshin, J. Phys. Chem. Lett. 7, 4353–4357 (2016)

    Article  CAS  Google Scholar 

  21. D. Hong, P. Zhao, Y. Du, C. Zhao, Y. Xia, Z. Wei, Z. Jin, Y. Tian, iScience 23, 101415 (2020)

    Article  CAS  Google Scholar 

  22. J. Lu, S.-C. Chen, Q. Zheng, Sci. China Chem. 62, 1044–1050 (2019)

    Article  CAS  Google Scholar 

  23. S. Derbali, K. Nouneh, M. Florea, F. Neatu, S. Neatu, L.N. Leonat, M. Secu, A.G. Tomulescu, V. Stancu, L. Pintilie, M.E. Touhami, A.C. Galca, Phys. Scr. 95, 044003 (2020)

    Article  CAS  Google Scholar 

  24. V. Stancu, L.N. Leonat, A.G. Tomulescu, S. Derbali, L. Pintilie, C. Besleaga, A.C. Galca, F. Neatu, S Neatu, M. Florea, I. Pintilie, Phys. Scr. 95(7), 075707 (2020)

    Article  CAS  Google Scholar 

  25. A. Swarnkar, W.J. Mir, A. Nag, ACS Energy Lett. 3, 286–289 (2018)

    Article  CAS  Google Scholar 

  26. X. Deng, B. Luo, Z. Zhang, Y. Yao, C. Zhao, M. Shi, E. Tian, Physica B 603, 412703 (2021)

    Article  CAS  Google Scholar 

  27. R. Chen, D. Hou, C. Lu, J. Zhang, P. Liu, H. Tian, Z. Zeng, Q. Xiong, Z. Hu, Y. Zhu, L. Han, Sustain. Energy Fuels 2, 1093–1100 (2018)

    Article  CAS  Google Scholar 

  28. X. Ge, X. Qu, L. He, Y. Sun, X. Guan, Z. Pang, C. Wang, L. Yang, F. Wang, F. Rosei, J. Mater. Chem. A 7, 27225–27235 (2019)

    Article  CAS  Google Scholar 

  29. Z. Zhang, X. Li, X. Xia, Z. Wang, Z. Huang, B. Lei, Y. Gao, J. Phys. Chem. Lett. 8, 4300–4307 (2017)

    Article  CAS  Google Scholar 

  30. M. Badrooj, F. Jamali-Sheini, N. Torabi, Sol. Energy 236, 63–74 (2022)

    Article  CAS  Google Scholar 

  31. A.G. Tomulescu, V. Stancu, C. Beşleagă, M. Enculescu, G.A. Nemneş, M. Florea, V. Dumitru, L. Pintilie, I. Pintilie, L. Leonat, Energy Technol. 8, 1900922 (2020)

    Article  CAS  Google Scholar 

  32. In Ionic Compounds, John Wiley & Sons, Ltd, 2006, pp. 171–171.

  33. W. Travis, E.N.K. Glover, H. Bronstein, D.O. Scanlon, R.G. Palgrave, Chem. Sci. 7, 4548–4556 (2016)

    Article  CAS  Google Scholar 

  34. G.P. Nagabhushana, R. Shivaramaiah, A. Navrotsky, PNAS 113, 7717–7721 (2016)

    Article  CAS  Google Scholar 

  35. M. Caputo, N. Cefarin, A. Radivo, N. Demitri, L. Gigli, J.R. Plaisier, M. Panighel, G. Di Santo, S. Moretti, A. Giglia, M. Polentarutti, F. De Angelis, E. Mosconi, P. Umari, M. Tormen, A. Goldoni, Sci. Rep. 9, 15159 (2019)

    Article  Google Scholar 

  36. C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, Z. Guo, Acta Cryst. B 64, 702–707 (2008)

    Article  CAS  Google Scholar 

  37. P. Scherrer, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse 1918, 98–100 (1918)

    Google Scholar 

  38. X.-Y. Zhu, M.-W. Chen, B. Wang, N. Liu, M.-Q. Ran, H. Yang, Y.-P. Yang, Opt. Express 26, 984–995 (2018)

    Article  Google Scholar 

  39. H. Mehdi, L.N. Leonat, V. Stancu, H. Saidi, M. Enculescu, A.-G. Tomulescu, V. Toma, I. Pintilie, A. Bouazizi, A.C. Galca, Mater. Sci. Semicond. Process. 143, 106558 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.D. acknowledges the Romanian Ministry of Foreign Affairs and Agence Universitaire de la Francophonie for the Eugen Ionescu research scholarship no.15/2019. The research leading to these results has received funding from the EEA Grants 2014–2021, under Project contract no. 36/2021 (project code: EEA-RO-NO-2018-0106) and Core Program 2023-2026, project PN23080303.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by SD, KN, LNL, VS, AGT, ACG, MET, IP and MF. The first draft of the manuscript was written by SD and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to S. Derbali or M. Florea.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derbali, S., Nouneh, K., Leonat, L.N. et al. Partial replacement of Pb2+ in MAPbI2.6Cl0.4 perovskite films and their photovoltaic performance. J Mater Sci: Mater Electron 34, 903 (2023). https://doi.org/10.1007/s10854-023-10318-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10318-9

Navigation