Skip to main content
Log in

Analysis and characterization of magneto-structural transformations and critical exponent analysis of La0.8Ca0.2−xPbxMnO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Because of their significant magnetocaloric properties, Ca and Pb-doped LaMnO3 can be employed in magnetic refrigeration systems. The partial substitution effect of Ca2+ by Pb2+ cations on the structural, magnetocaloric properties, and critical behavior of mixed valence perovskites La0.8Ca0.2−xPbxMnO3 (0 ≤ x ≤ 0.15), synthesized by the flash combustion route, was studied in this work. The presence of structural transformations of the prepared ceramics from an orthorhombic structure (Pbnm space group) for samples with x ≤ 0.05 to a rhombohedral system (\(R\stackrel{-}{3}c\) space group) for x ≥ 0.1 was detected by X-ray diffraction analysis, which is related to the A-site disorder. The field-cooled (FC) magnetization indicated a second-order ferromagnetic-paramagnetic transition for the investigated samples when the temperature was increased. Due to the change in the Mn3+/Mn4+ ratio, substituting Ca2+ with larger Pb2+ ions increases the Curie temperature (TC) by increasing Pb doping content from 90 K for x = 0 to 205 K for x = 0.15. The magnetization isotherms of all samples showing a second-order phase transition were studied, where an applied magnetic field of 5 T, the value of maximum magnetic entropy variation \({/\varDelta \text{S}}_{\text{M}}^{\text{m}\text{a}\text{x}}/\) for the sample with x = 0.15 was estimated to be 2.73 Jkg−1 K−1. In addition, it has a significant relative cooling power of about 276 Jkg−1 under the same applied magnetic field strength. The critical behavior of the samples was investigated close to TC. The exponent values were identical to the mean-field method, indicating a large disorder of spin magnetic moments in the perovskite compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The authors confirm that all data generated or analyzed during this study are included in this paper.

References

  1. T. Gottschall, K.P. Skokov, M. Fries, A. Taubel, I. Radulov, F. Scheibel, D. Benke, S. Riegg, O. Gutfleisch, Making a cool choice: the materials library of magnetic refrigeration. Adv. Energy Mater. 9, 1901322 (2019). https://doi.org/10.1002/aenm.201901322

    Article  CAS  Google Scholar 

  2. J.Q. Feng, Y.H. Liu, J.H. Sui, A.N. He, W.X. Xia, W.H. Wang, J.Q. Wang, J.T. Huo, Giant refrigerant capacity in Gd-based amorphous/nanocrsytalline composite fibers. Mater. Today Phys. 21, 100528 (2021). https://doi.org/10.1016/j.mtphys.2021.100528

    Article  CAS  Google Scholar 

  3. S.C. Maatar, R. M’nassri, W.C. Koubaa, M. Koubaa, A. Cheikhrouhou, Structural, magnetic and magnetocaloric properties of La0.8Ca0.2–xNaxMnO3 manganites (0 ≤ x ≤ 0.2). J. Solid State Chem. 225, 83–88 (2015). https://doi.org/10.1016/j.jssc.2014.12.007

    Article  CAS  Google Scholar 

  4. I. Ouni, H.B. Khlifa, R. M’nassri, M.M. Nofal, H. Rahmouni, W. Cheikhrouhou, N. Chniba-Boudjada, K. Khirouni, A. Cheikhrouhou, Structural, magnetic, electrical and dielectric properties of Pr0.8Na0.2MnO3 manganite. RSC Adv. 9, 35599–35607 (2019). https://doi.org/10.1039/C9RA05414F

    Article  CAS  Google Scholar 

  5. J.R. Gómez, R.F. Garcia, A.D.M. Catoira, M.R. Gómez, Magnetocaloric effect: a review of the thermodynamic cycles in magnetic refrigeration. Renew. Sustain. Energ. 17, 74–82 (2013). https://doi.org/10.1016/j.rser.2012.09.027

    Article  Google Scholar 

  6. A.A. Ben Ammar, W. Cheikhrouhou-Koubaa, M. Koubaa, S. Nowak, H. Lecoq, L. Sicard, S. Ammar, A. Cheikhrouhou, Effect of sodium substitution on the physical properties of sol–gel made La0.65Ca0.35MnO3 ceramics. Mater. Chem. Phys. 148, 751–758 (2014). https://doi.org/10.1016/j.matchemphys.2014.08.044

    Article  CAS  Google Scholar 

  7. Z. Xu, F. Wang, G. Lin, Magnetocaloric and refrigeration characteristics of magnetic Composite Material composed with gd and gd 1-x Ho x Alloy. J. Supercond. Nov. Magn. 34, 243–249 (2021). https://doi.org/10.1007/s10948-020-05739-0

    Article  CAS  Google Scholar 

  8. M.F. Liu, Z.Z. Du, Y.L. Xie, X. Li, Z.B. Yan, J.M. Liu, Unusual ferromagnetism enhancement in ferromagnetically optimal manganite La0.7–yCa0.3+yMn1 – yRuyO3 (0 ≤ y < 0.3): the role of Mn-Ru t 2 g super-exchange. Sci. Rep. 5, 9922 (2015). https://doi.org/10.1038/srep09922

    Article  CAS  Google Scholar 

  9. K. Bidai, M. Ameri, S. Amel, I. Ameri, Y. Al-Douri, D. Varshney, C.H. Voon, First-principles calculations of pressure and temperature dependence of thermodynamic properties of anti-perovskite BiNBa3 compound. Chin. J. Phys. 55, 2144–2155 (2017). https://doi.org/10.1016/j.cjph.2017.03.023

    Article  CAS  Google Scholar 

  10. A. Gherriche, A. Bouhemadou, Y. Al-Douri, S. Bin-Omran, R. Khenata, M.A. Hadi, Ab initio exploration of the structural, elastic, electronic and optical properties of a new layered perovskite-type oxyfluoride: CsSrNb2O6F. Mater. Sci. Semicond. Process. 131, 105890 (2021). https://doi.org/10.1016/j.mssp.2021.105890

    Article  CAS  Google Scholar 

  11. R. Arar, T. Ouahrani, D. Varshney, R. Khenata, G. Murtaza, D. Rached, A. Bouhemadou, Y. Al-Douri, S. Bin Omran, A.H. Reshak, Structural, mechanical and electronic properties of sodium based fluoroperovskites NaXF3 (X = mg, zn) from first-principle calculations. Mater. Sci. Semicond. Process. 33, 127–135 (2015). https://doi.org/10.1016/j.mssp.2015.01.040

    Article  CAS  Google Scholar 

  12. F. Litimein, R. Khenata, A. Bouhemadou, Y. Al-Douri, S. Bin, Omran, First-principle calculations to investigate the elastic and thermodynamic properties of RBRh3 (R = sc, y and La) perovskite compounds. Mol. Phys. 110, 121–128 (2012). https://doi.org/10.1080/00268976.2011.635607

    Article  CAS  Google Scholar 

  13. A.H. Reshak, M.S. Abu-Jafar, Y. Al-Douri, Two symmetric n-type interfaces SrTiO3/LaAlO3 in perovskite: electronic properties from density functional theory. J. Appl. Phys. 119, 245303 (2016). https://doi.org/10.1063/1.4954293

    Article  CAS  Google Scholar 

  14. S. Ait Bouzid, A. Essoumhi, A.M. Rostas, A.C. Kuncser, C.C. Negrila, N. Iacob, A. Galatanu, B. Popescu, M. Sajieddine, A.C. Galca, V. Kuncser, Enhanced magnetocaloric properties of La0.8K0.2–xPbxMnO3 nanoparticles by optimizing Pb doping concentrations. Ceram. Int. 48, 16845–16860 (2022). https://doi.org/10.1016/j.ceramint.2022.02.239

    Article  CAS  Google Scholar 

  15. P.A. Kumar, R. Mathieu, P. Nordblad, S. Ray, O. Karis, G. Andersson, D.D. Sarma, Reentrant superspin glass phase in a La0.82Ca0.18MnO3 ferromagnetic insulator. Phys. Rev. X. 4, 011037 (2014). https://doi.org/10.1103/PhysRevX.4.011037

    Article  CAS  Google Scholar 

  16. M. Koubaa, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, A.M. Haghiri-Gosnet, Structural, magnetic and magnetocaloric properties of La{sub0.65}Ca{sub0.35-x}Na{sub x}MnO{sub3}Na-doped manganites. Phys. B: Condens. Matter. 403, 2477–2483 (2008). https://doi.org/10.1016/j.physb.2008.01.011

    Article  CAS  Google Scholar 

  17. M. Koubaa, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, Effect of Ag doping on structural, magnetic and magnetocaloric properties of La0.65Ca0.35–xAgxMnO3 manganites. J. Alloys Compd. 473, 5–10 (2009). https://doi.org/10.1016/j.jallcom.2008.05.089

    Article  CAS  Google Scholar 

  18. M. Koubaa, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, Effect of K doping on the physical properties of La0.65Ca0.35–xKxMnO3 (0≤ x ≤ 0.2) perovskite manganites. J. Phys. Chem. Solids. 70, 326–333 (2009). https://doi.org/10.1016/j.jpcs.2008.10.028

    Article  CAS  Google Scholar 

  19. M. Nasri, M. Triki, E. Dhahri, E.K. Hlil, Critical behavior in Sr-doped manganites La0.6Ca0.4–xSrxMnO3. J. Alloys Compd. 546, 84–91 (2013). https://doi.org/10.1016/j.jallcom.2012.08.018

    Article  CAS  Google Scholar 

  20. L.V. Bau, O. Morán, P.T. Tho, P.T. Phong, Critical properties and Magnetocaloric Effect in La0.7Ba0.3Mn0.8Ti0.2O3 ceramic. Metall. Mater. Trans. A 51, 1924–1932 (2020). https://doi.org/10.1007/s11661-020-05662-y

    Article  CAS  Google Scholar 

  21. N.J. Robinson, P.D. Johnson, T.M. Rice, A.M. Tsvelik, Anomalies in the pseudogap phase of the cuprates: competing ground states and the role of umklapp scattering. Rep. Prog Phys. 82, 126501 (2019). https://doi.org/10.1088/1361-6633/ab31ed

    Article  CAS  Google Scholar 

  22. A.B.J. Kharrat, E.K. Hlil, W. Boujelben, Bi doping effect on the critical behavior and magnetocaloric effect of Pr0.8–xBixSr0.2MnO3 (x = 0, 0.05 and 0.1). J. Alloys Compd. 739, 101–113 (2018). https://doi.org/10.1016/j.jallcom.2017.12.209

    Article  CAS  Google Scholar 

  23. J. Wang, J. Fan, F. Liu, L. Zu, H. Zheng, H. Liu, C. Ma, C. Wang, F. Qian, Y. Zhu, H. Yang, Magnetic properties and critical behavior of the perovskite manganite La0.825Sr0.175MnO3. Chem. Phys. Lett. 807, 140119 (2022). https://doi.org/10.1016/j.cplett.2022.140119

    Article  CAS  Google Scholar 

  24. A. Varvescu, I.G. Deac, Critical magnetic behavior and large magnetocaloric effect in Pr0.67Ba0.33MnO3 perovskite manganite. Phys. B Condens Matter. 470, 96–101 (2015). https://doi.org/10.1016/j.physb.2015.04.037

    Article  CAS  Google Scholar 

  25. T.L. Phan, Q.T. Tran, P.Q. Thanh, P.D.H. Yen, T.D. Thanh, S.C. Yu, Critical behavior of La0.7Ca0.3Mn1–xNixO3 manganites exhibiting the crossover of first-and second-order phase transitions. Solid State Commun. 184, 40–46 (2014). https://doi.org/10.1016/j.ssc.2013.12.032

    Article  CAS  Google Scholar 

  26. I. Dhahri, M. Ellouze, T. Mnasri, E.K. Hlil, R.B. Jotania, Structural, magnetic, magnetocaloric and critical exponents of oxide manganite La0.7Sr0.3Mn0.95Fe0.05O3. J. Mater. Sci. Mater. Electron. 31, 12493–12501 (2020). https://doi.org/10.1007/s10854-020-03797-7

    Article  CAS  Google Scholar 

  27. A. Ezaami, E. Sellami-Jmal, W. Cheikhrouhou-Koubaa, E.K. Hlil, A. Cheikhrouhou, Investigation of the critical properties near room temperature in La0.7Ca0.2Ba0.1MnO3 manganite. J. Mater. Sci. Mater. Electron. 28, 6837–6845 (2017). https://doi.org/10.1007/s10854-017-6382-z

    Article  CAS  Google Scholar 

  28. H.E. Sekrafi, A.B.J. Kharrat, N. Chniba-Boudjada, W. Boujelben, Effect of Ti substitution on the critical behavior around the paramagnetic-ferromagnetic phase transition of Pr0.75Bi0.05Sr0.1Ba0.1Mn1–xTixO3 (x = 0, 0.02 and 0.04) perovskite compounds. J. Alloys Compd. 790, 27–35 (2019). https://doi.org/10.1016/j.jallcom.2019.03.184

    Article  CAS  Google Scholar 

  29. S. Ait Bouzid, M. Sajieddine, E.K. Hlil, O. Mounkachi, M. Mansori, A. Nassiri, A. Essoumhi, Structural, magnetic transition and magnetocolaric properties of La1 – xLixMn1–yFeyO3 (x = 0.1, 0.2 and y = 0, 0.1) manganites. Appl. Phys. A 128, 1–14 (2022). https://doi.org/10.1007/s00339-021-05254-6

    Article  CAS  Google Scholar 

  30. S. Ait Bouzid, A.C. Galca, M. Sajieddine, V. Kuncser, A.M. Rostas, N. Iacob, M. Enculescu, L. Amarande, I. Pasuk, A. Essoumhi, Magneto-functionalities of La1 – xAxMnO3 (A = K; ba) synthesized by flash combustion method. J. Alloys Compd. 839, 155546 (2020). https://doi.org/10.1016/j.jallcom.2020.155546

    Article  CAS  Google Scholar 

  31. S. Sagadevan, S. Vennila, A.R. Marlinda, Y. Al-Douri, M. Rafie Johan, Anita Lett, synthesis and evaluation of the structural, optical, and antibacterial properties of copper oxide nanoparticles. Appl. Phys. A 125, 489–497 (2019). https://doi.org/10.1007/s00339-019-2785-4

    Article  CAS  Google Scholar 

  32. J. Robin, K. Kelvin, Charge transfer in copper oxide nanostructure. J. Exp. Theor. Nanotechnol. 7, 325–336 (2023). https://doi.org/10.56053/7.2.325

    Article  Google Scholar 

  33. A. Bouhemadou, O. Boudrifa, N. Guechi, R. Khenata, Y. Al-Douri, Å. Uǧur, B. Ghebouli, S. Bin-Omran, Structural, elastic, electronic, chemical bonding and optical properties of Cu-based oxides ACuO (A = Li, na, K and rb): an ab initio study. Comput. Mater. Sci. 81, 561–574 (2014). https://doi.org/10.1016/j.commatsci.2013.09.011

    Article  CAS  Google Scholar 

  34. J. Plain, M. Tréguer-Delapierre, Structural analysis and characterization of lead oxide. J. Exp. Theor. Nanotechnol. 6, 453–472 (2022). https://doi.org/10.56053/6.4.453

    Article  Google Scholar 

  35. S. Choura-Maatar, M.M. Nofal, R. M’nassri, W. Cheikhrouhou-Koubaa, N. Chniba-Boudjada, A. Cheikhrouhou, Enhancement of the magnetic and magnetocaloric properties by na substitution for ca of La0.8Ca0.2MnO3 manganite prepared via the Pechini-type sol–gel process. J. Mater. Sci. : Mater. Electron. 31, 1634–1645 (2020). https://doi.org/10.1007/s10854-019-02680-4

    Article  CAS  Google Scholar 

  36. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  37. V. Cuartero, J. Blasco, G. Subías, J. García, C. Meneghini, G. Aquilanti, Stability of Jahn-Teller distortion ordering in LaMn1 – xScxO3. Phys. Rev. B 92, 125118 (2015). https://doi.org/10.1103/PhysRevB.92.125118

    Article  CAS  Google Scholar 

  38. Y. Samanciolu, A. Coşkun, Magnetic properties of A- and B-site cation doped La0.65Ca 0.35MnO3 manganites. J. Alloys Compd. 507, 380–385 (2010). https://doi.org/10.1016/j.jallcom.2010.07.212

    Article  CAS  Google Scholar 

  39. C.F. Pai, Y. Ou, L.H. Vilela-Leão, D.C. Ralph, R.A. Buhrman, Dependence of the efficiency of spin hall torque on the transparency of Pt/ferromagnetic layer interfaces. Phys. Rev. B 92, 064426 (2015). https://doi.org/10.1103/PhysRevB.92.064426

    Article  CAS  Google Scholar 

  40. K. Radja, B.L. Farah, A. Ibrahim, D. Lamia, I. Fatima, B. Nabil, A. Mohamed, Y. Al-Douri, A.F.A. El-Rehim, Investigation of structural, magneto-electronic, elastic, mechanical and thermoelectric properties of novel lead-free halide double perovskite Cs2AgFeCl6: first-principles calcuations. J. Phys. Chem. Solids. 167, 110795 (2022). https://doi.org/10.1016/j.jpcs.2022.110795

    Article  CAS  Google Scholar 

  41. D.R. Munazat, B. Kurniawan, Structural studies of La0.7Sr0.2Ba0.1Mn1–xNixO3 (x = 0 and x = 0.1) perovskite manganite synthesized by sol-gel method. J. Phys. Conf. Ser. 1170, 012051 (2019). https://doi.org/10.1088/1742-6596/1170/1/012051

    Article  CAS  Google Scholar 

  42. S. Ait Bouzid, M. Sajieddine, O. Mounkachi, M. Mansori, A. Essoumhi, Influence of iron substitution on the ferromagnetic ordering and magnetic entropy variation in La1 – xNaxMn1–yFeyO3 (x = 0.1, 0.2 and y = 0, 0.1. J. Alloys Compd. 537, 168194 (2021). https://doi.org/10.1016/j.jmmm.2021.168194

    Article  CAS  Google Scholar 

  43. M.A.A. Bally, F.A. Khan, M.A. Islam, Study of A-site disorder dependent structural properties and magnetic ordering in polycrystalline perovskite Sm0.5Ca0.5–xSrxMnO3. J. Phys. Commun. 3, 105012 (2019). https://doi.org/10.1088/2399-6528/ab3336

    Article  CAS  Google Scholar 

  44. I. Sfifir, N.O. Nasser, H. Ben Khlifa, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, Critical behavior near the paramagnetic-ferromagnetic phase transition in polycrystalline La0.6Ca0.2Ba0.150.05MnO3, Ceram. Int. 42, 12956–12963 (2016). https://doi.org/10.1016/j.ceramint.2016.05.068

    Article  CAS  Google Scholar 

  45. J.I. Langford, Some applications of pattern fitting to powder diffraction data. Prog Cryst. Growth Charact. 14, 185 (1987). https://doi.org/10.1016/0146-3535(87)90018-9

    Article  CAS  Google Scholar 

  46. T.A. Ho, T.L. Phan, P.D. Thang, S.C. Yu, Influence of Pb doping on the magnetocaloric effect and critical behavior of (La0.9Dy0.1)0.8Pb0.2MnO3. J. Electron. Mater. 45, 2328–2333 (2016). https://doi.org/10.1007/s11664-015-4274-7

    Article  CAS  Google Scholar 

  47. D. Mazumdar, K. Das, I. Das, Study of magnetocaloric effect and critical exponents in polycrystalline La0.4Pr0.3Ba0.3MnO3 compound. J. Appl. Phys. 127, 093902 (2020). https://doi.org/10.1063/1.5142337

    Article  CAS  Google Scholar 

  48. C. Henchiri, T. Mnasri, A. Benali, R. Hamdi, E. Dhahri, M.A. Valente, B.F.O. Costa, Structural study and large magnetocaloric entropy change at room temperature of La1 – xx MnO3 compounds. RSC Adv. 10, 8352–8363 (2020). https://doi.org/10.1039/C9RA10469K

    Article  CAS  Google Scholar 

  49. N. Mtiraoui, J. Dhahri, M. Oumezine, Critical behavior in Ag-doped managnites La0.67Pb0.33–xAgxMnO3 (x = 0.1 and 0.15). J. Magn. Magn. Mater. 345, 118–124 (2013). https://doi.org/10.1016/j.jmmm.2013.06.034

    Article  CAS  Google Scholar 

  50. A. Zahrin, N.A. Azhar, N. Ibrahim, Z. Mohamed, Structural, magnetic, and Electrical Properties and Magnetoresistance of Monovalent K-Substituted La0.7Ba0.3–xKxMnO3 (x = 0 and 0.04. Manganite Condens. Matter. 7, 51 (2022). https://doi.org/10.3390/condmat7030051

    Article  CAS  Google Scholar 

  51. M. Pękała, J. Szydłowska, K. Pękała, V. Drozd, Griffiths like phase in nanocrystalline manganite La0.50Ca0.50MnO3 studied by magnetic susceptibility and electron magnetic resonance. J. Alloys Compd. 685, 237–241 (2016). https://doi.org/10.1016/j.jallcom.2016.05.304

    Article  CAS  Google Scholar 

  52. T.A. Ho, N.T. Dang, T.L. Phan, D.S. Yang, B.W. Lee, S.C. Yu, N.T. Dang, T.L. Phan, D.S. Yang, B.W. Lee, S.C. Yu, Magnetic and magnetocaloric properties in La0.7Ca0.3–xNaxMnO3 exhibiting first-order and second-order magnetic phase transitions. J. Alloys Compd. 676, 305–312 (2016). https://doi.org/10.1016/j.jallcom.2016.03.156

    Article  CAS  Google Scholar 

  53. Y. Li, H. Zhang, Q. Chen, D. Li, Z. Li, Y. Zhang, Effects of A-site cationic radius and cationic disorder on the electromagnetic properties of La0.7Ca0.3MnO3 ceramic with added Sr, Pb, and Ba. Ceram. Int. 44, 5378–5384 (2018). https://doi.org/10.1016/j.ceramint.2017.12.165

    Article  CAS  Google Scholar 

  54. B.K. Banerjee, On a generalised approach to first and second order magnetic transitions. Phys. Lett. 12, 16–17 (1964). https://doi.org/10.1016/0031-9163(64)91158-8

    Article  Google Scholar 

  55. A. Charkaoui, R. Moubah, M. Bouhbou, H. Lassri, A. Elouafi, P.E. Jönsson, Critical behavior and magnetocaloric effect in C-implanted Fe93Zr7 amorphous films. Solid State Commun. 316, 113962 (2020). https://doi.org/10.1016/j.ssc.2020.113962

    Article  CAS  Google Scholar 

  56. V. Chaudhary, D.V. Maheswar Repaka, A. Chaturvedi, I. Sridhar, R.V. Ramanujan, Magnetocaloric properties and critical behavior of high relative cooling power FeNiB nanoparticles. J. Appl. Phys. 116, 163918 (2014). https://doi.org/10.1063/1.4900736

    Article  CAS  Google Scholar 

  57. G.F. Wang, Z.R. Zhao, H.L. Li, X.F. Zhang, Enhancement of refrigeration capacity and table-like magnetocaloric effect in La0.8Ca0.2MnO3/La0.8K0.2MnO3 nanocrystalline composite. Ceram. Int. 41, 9035–9040 (2015). https://doi.org/10.1016/j.ceramint.2015.03.275

    Article  CAS  Google Scholar 

  58. Z.G. Zheng, X.C. Zhong, Z.W. Liu, D.C. Zeng, V. Franco, J.L. Zhang, Magnetocaloric effect and critical behavior of amorphous (Gd4Co3)1– xSix alloys. J. Magn. Magn. Mater. 343, 184–188 (2013). https://doi.org/10.1016/j.jmmm.2013.04.087

    Article  CAS  Google Scholar 

  59. A. Dhahri, M. Jemmali, K. Taibi, E. Dhahri, E.K. Hlil, Structural, magnetic and magnetocaloric properties of La0.7Ca0.2Sr0.1Mn1–xCrxO3 compounds with x = 0, 0.05 and 0.1. J. Alloys Compd. 618, 488–496 (2015). https://doi.org/10.1016/j.jallcom.2014.08.117

    Article  CAS  Google Scholar 

  60. A.D. Souza, M.S. Murari, M.D. Daivajna, Structural, magnetic and magnetocaloric properties of Nanostructured La0.5Bi0.2Sr0.3MnO3 perovskites. Phys. Rev. B Condens. Matter. 580, 411909 (2020). https://doi.org/10.1016/j.physb.2019.411909

    Article  CAS  Google Scholar 

  61. Z. Wang, Q. Xu, H. Zhang, Magnetocaloric effect at room temperature in manganese perovskite La0.65Nd0.05Pb0.3MnO3 with double resistivity peaks. J. Magn. Magn. Mater. 323, 3229–3233 (2011). https://doi.org/10.1016/j.jmmm.2011.07.013

    Article  CAS  Google Scholar 

  62. Z.M. Wang, G. Ni, Q.Y. Xu, H. Sang, Y.W. Du, Magnetocaloric effect in perovskite manganites La0.7–xNdxCa0.3MnO3 and La0.7Ca0.3MnO3. J. Appl. Phys. 90, 5689–5691 (2001). https://doi.org/10.1063/1.1415055

    Article  CAS  Google Scholar 

  63. M.A. Hamad, Prediction of thermomagnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3. Ph Transit. 85, 106–112 (2012). https://doi.org/10.1080/01411594.2011.605027

    Article  CAS  Google Scholar 

  64. M. Zarifi, P. Kameli, T. Raoufi, A.G. Varzaneh, D. Salazar, M.I. Nouraddini, L. Kotsedi, M. Maaza, Direct and indirect measurement of the magnetocaloric effect in the La0.5Ca0.5–xPbxMnO3 (0 ≤ x ≤ 0.2) manganites. J. Magn. Magn. Mater. 494, 165734 (2020). https://doi.org/10.1016/j.jmmm.2019.165734

    Article  CAS  Google Scholar 

  65. S. Bouzidi, M.A. Gdaiem, S. Rebaoui, J. Dhahri, E.K. Hlil, Large magnetocaloric effect in La0.75Ca0.25–xNaxMnO3 (0 ≤ x ≤ 0.10) manganites. Appl. Phys. A 126, 60 (2020). https://doi.org/10.1007/s00339-019-3219-z

    Article  CAS  Google Scholar 

  66. A. Murtaza, W. Zuo, J. Mi, Y. Li, A. Ghani, M. Yaseen, M. Tahir Khan, C. Hao, K. Li, Z. Dai, S. Yang, Y. Ren, Magnetocaloric effect and critical exponent analysis around magnetic phase transition in NdCo2 compound. J. Phys. D Appl. Phys. 53, 345003 (2020). https://doi.org/10.1088/1361-6463/ab8c7f

    Article  CAS  Google Scholar 

  67. C. Zhang, Y. Yuan, M. Wang, P. Li, J. Zhang, Y. Wen, S. Zhou, X.X. Zhang, Critical behavior of intercalated quasi-van Der Waals Ferromagnet Fe0.26TaS2. Phys. Rev. Mater. 3, 114403 (2019). https://doi.org/10.1103/PhysRevMaterials.3.114403

    Article  CAS  Google Scholar 

  68. S. Mnefgui, N. Zaidi, A. Dhahri, E.K. Hlil, J. Dhahri, Behavior of the magnetocaloric effect and critical exponents in La0.67Sr0.33Mn1–xVxO3 manganite oxide. J. Solid State Chem. 215, 193–200 (2014). https://doi.org/10.1016/j.jssc.2014.03.045

    Article  CAS  Google Scholar 

  69. P. Zhang, P. Lampen, T.L. Phan, S.C. Yu, T.D. Thanh,, N.H. Dan, V.D. Lam, H. Srikanth, M.H. Phan, Influence of magnetic field on critical behavior near a first order transition in optimally doped manganites: the case of La1 – xCaxMnO3 (0.2 ≤ x ≤ 0.4). J. Magn. Magn. Mater. 348, 146–153 (2013). https://doi.org/10.1016/j.jmmm.2013.08.025

    Article  CAS  Google Scholar 

  70. S. Alleg, S. Souilah, K. Dadda, J.J. Suñol, E.K. Hlil, H. Lassri, Investigation of the critical behavior and magnetocaloric properties in the nanocrystalline CuNi powders. J. Magn. Magn. Mater. 444, 54–60 (2017). https://doi.org/10.1016/j.jmmm.2017.08.010

    Article  CAS  Google Scholar 

  71. P.T. Phong, L.T.T. Ngan, L.V. Bau, N.X. Phuc, P.H. Nam, L.T.H. Phong, N.V. Dang, I.J. Lee, Magnetic field dependence of Griffith phase and critical behavior in La0.8Ca0.2MnO3 nanoparticles. J. Magn. Magn. Mater. 475, 374–381 (2019). https://doi.org/10.1016/j.jmmm.2018.11.122

    Article  CAS  Google Scholar 

  72. A. Benali, M. Bejar, E. Dhahri, E.K. Hlil, Study of critical behavior of perovskite La0.8Ca0.2–xPbxFeO3 (x = 0.0, 0.1 and 0.2) compounds. J. Alloys Compd. 638, 305–312 (2015). https://doi.org/10.1016/j.jallcom.2015.03.011

    Article  CAS  Google Scholar 

  73. H. Baaziz, A. Tozri, E. Dhahri, E.K. Hlil, Size reduction effect on the critical behavior near the paramagnetic to ferromagnetic phase transition temperature in La0.9Sr0.1MnO3 nanoparticles. Solid State Commun. 208, 45–52 (2015). https://doi.org/10.1016/j.ssc.2015.02.015

    Article  CAS  Google Scholar 

  74. Y. Ounza, M. Bouhbou, M. Oubla, M. Moutataouia, M. Lamire, E.K. Hlil, H. Lassri, Magnetic, Magnetocaloric, and critical Exponent properties of layered Perovskite La1.1Bi0.3Sr1.6Mn2O7 prepared by Coprecipitation Method. J. Supercond Nov Magn. 33, 3791–3798 (2020). https://doi.org/10.1007/s10948-020-05637-5

    Article  CAS  Google Scholar 

  75. R. Tlili, A. Omri, A. Dhahri, M. Bekri, M. Bejar, E. Dhahri, E.K. Hlil, Influence of Ga doping on the critical behavior of La0.7(Ba, Sr)0.3Mn1–xGaxO3. J. Alloys Compd. 666, 425–431 (2016). https://doi.org/10.1016/j.jallcom.2016.01.063

    Article  CAS  Google Scholar 

  76. M. Ziese, Critical scaling and percolation in manganite films. J. Phys. Condens. Matter 13, 2919 (2001). https://doi.org/10.1088/0953-8984/13/13/306

    Article  CAS  Google Scholar 

Download references

Funding

S. Ait Bouzid acknowledges the Moroccan National Center for Scientific and Technical Research for Excellence scholarship number 17USMS2018. This work was supported through the Core Program within the National Research Development and Innovation Plan 2022–2027, carried out with the support of MCID, project no. 27 N / 03.01.2023, component project code PN 23 24 01 03.

Author information

Authors and Affiliations

Authors

Contributions

SAB: Conceptualization, Visualization, Methodology, Resources, Writing—original draft, Formal analysis, Validation. MS: Supervision, Project administration, Conceptualization, Investigation, Resources, Formal analysis, Writing—review & editing, Validation. EkH: Investigation, Resources. AMR:Investigation, Resources, Writing—review & editing. AE: Supervision, Project administration, Conceptualization, Visualization, Methodology, Resources, Writing—review & editing, Validation.

Corresponding authors

Correspondence to Sara Ait Bouzid or Abdellatif Essoumhi.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence this work.

Ethical approval

The authors declare that there are no ethics problems.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ait Bouzid, S., Sajieddine, M., Hlil, E.k. et al. Analysis and characterization of magneto-structural transformations and critical exponent analysis of La0.8Ca0.2−xPbxMnO3. J Mater Sci: Mater Electron 34, 2166 (2023). https://doi.org/10.1007/s10854-023-11475-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11475-7

Navigation