Skip to main content
Log in

Influence of synthesis method and processing on the thermoelectric properties of CoSb3 skutterudites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, single phase CoSb3 skutterudite nanomaterials were prepared via a ball milling method, and their thermoelectric characteristics were compared with the samples synthesized by the solvo-hydrothermal method. Thermoelectric transport properties were recorded in the temperature regime of 300–830 K. Both samples exhibit p-type conduction behavior with a positive sign of Seebeck coefficient. CoSb3 ball mill sample exhibit higher resistivity of 127 × \({10}^{-5}\)Ω.m at 300 K as compared to CoSb3 solvo-hydrothermal sample with 4.85 × \({10}^{-5}\)Ω.m. However, CoSb3 ball mill sample show enhanced Seebeck coefficient of 183µ V/K at 473 K where CoSb3 solvo-hydrothermal sample depict 98 µ V/K at 650 K. Furthermore, the total thermal conductivity of sintered CoSb3 ball mill and CoSb3 solvo-hydrothermal samples was found to be 3.02 Wm−1K−1 and 3.23 W m−1K−1 at room temperature and reaches a significantly lower value of 2.47 W m−1K−1 and 2.46 W m−1K−1 at 580 and 670 K, respectively. The dimensionless figure of merit ZT values of CoSb3 ball mill and CoSb3 solvo-hydrothermal obtained are 0.053 and 0.060 at 650 and 700 K, respectively. A systematic tuning of processing parameters by ball milling method can lead to better thermoelectric efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. J. Mao, Z. Liu, J. Zhou, H. Zhu, Q. Zhang, G. Chen, Z. Ren, Adv. Phys. 67, 69 (2018)

    Article  Google Scholar 

  2. X.L. Shi, J. Zou, Z.G. Chen, Chem. Rev. 120, 7399 (2020)

    Article  CAS  PubMed  Google Scholar 

  3. D. Qin, B. Cui, X. Meng, P. Qin, L. Xie, Q. Zhang, W. Liu, J. Cao, W. Cai, J. Sui, Mater. Today Phys. 8, 128 (2019)

    Article  Google Scholar 

  4. G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.-P. Fleurial, Int. Mater. Rev. 48, 1 (2003)

    Article  Google Scholar 

  5. Y. Miao, G. Wang, Z. Kong, B. Xu, X. Zhao, X. Luo, H. Lin, Y. Dong, B. Lu, L. Dong, J. Zhou, J. Liu, H.H. Radamson, Nanomaterials. 11, 2556 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Z. Kong, G. Wang, R. Liang, J. Su, M. Xun, Y. Miao, S. Gu, J. Li, K. Cao, H. Lin, B. Lin, Y. Ren, J. Li, J. Xu, H.H. Radamson, Nanomaterials. 12, 981 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. W.D. Liu, D.Z. Wang, Q. Liu, W. Zhou, Z. Shao, Z.G. Chen, Adv. Energy Mater. 10, 2000367 (2020)

    Article  CAS  Google Scholar 

  8. Y.M. Makogon, S.I. SIdorenko, R.A. Shkarban, Prog Phys. Met. 19, 5 (2018)

    Article  CAS  Google Scholar 

  9. L. Fonseca, I.D. Noyan, M. Dolcet, D.E. Wiese, J. Santander, M. Salleras, G. Gadea, M. Pacios, J.M. Sojo, A. Morata, A. Tarancon, Nanomaterials. 11, 517 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Y. Li, G. Wang, M.A. Saatlu, M. Procek, H.H. Radamson, Front. Mater. 8, 611078 (2021)

    Article  Google Scholar 

  11. M. Noroozi, G. Jayakumar, K. Zahmatkesh, J. Lu, L. Hultman, M. Mensi, S. Marcinkevicius, B. Hamawandi, M.Y. Tafti, A.B. Ergül, Z. Ikonic, M.S. Toprak, H.H. Radamson, ECS J. Solid State Sci. Technol. 6, 114 (2017)

    Article  Google Scholar 

  12. W. Liu, K. Yin, Q. Zhang, C. Uher, X. Tang, Natl. Sci. Rev. 4, 611 (2017)

    Article  CAS  Google Scholar 

  13. B. Ge, R. Li, G. Wang, M. Zhu, C. Zhou, J. Am. Ceram. Soc. 107, 1985 (2024)

    Article  CAS  Google Scholar 

  14. A.P. Goncalves, C. Godart, Eur. Phys. J. B 87, 1 (2014)

    Article  Google Scholar 

  15. S. Pailhès, V.M. Giordano, S.R. Turner, P.F. Lory, C. Candolfi, M.D. Boissieu, H Euchner Results Phys. 49, 106487 (2023)

    Article  Google Scholar 

  16. K. Xia, C. Hu, C. Fu, X. Zhao, T. Zhu, Appl. Phys. Lett. 118, 140503 (2021)

    Article  CAS  Google Scholar 

  17. G. Rogl, P.F. Rogl, Cryst. 12, 1843 (2022)

    Article  CAS  Google Scholar 

  18. Z.Y. Liu, J.L. Zhu, X. Tong, S. Niu, W.Y. Zhao, J. Adv. Ceram. 9, 647 (2020)

    Article  CAS  Google Scholar 

  19. W. Zhao, Z. Liu, Z. Sun, Q. Zhang, P. Wei, X. Mu, H. Zhou, C. Li, S. Ma, D. He, P. Ji, W. Zhu, X. Nie, X. Su, X. Tang, B. Shen, X. Dong, J. Yang, Y. Liu, J. Shi, Nature. 549, 247 (2017)

    Article  CAS  PubMed  Google Scholar 

  20. X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, L. Chen, J. Am. Chem. Soc. 133, 7837 (2011)

    Article  CAS  PubMed  Google Scholar 

  21. S. Wan, P. Qiu, X. Huang, Q. Song, S. Bai, X. Shi, L. Chen, ACS Appl. Mater. Interfaces. 10, 625 (2018)

    Article  CAS  PubMed  Google Scholar 

  22. X. Ye, G. Chen, B. Duan, P. Zhai, J. Electron. Mater. 6, 1674 (2014)

    Google Scholar 

  23. G. Rogl, A. Grytsiv, P. Rogl, N. Peranio, E. Bauer, M. Zehetbauer, O. Eibl, Acta Mater. 63, 30 (2014)

    Article  CAS  Google Scholar 

  24. G. Rogl, K. Yubuta, M. Kerber, A. Grytsiv, M. Zehetbauer, E. Bauer, P. Rogl, Acta Mater. 173, 9 (2019)

    Article  CAS  Google Scholar 

  25. Z.X. Zhou, J.L. Li, Y.C. Fan, Q.H. Zhang, X.F. Lu, S.J. Fan, K. Kikuchi, N. Nomura, A. Kawasaki, L.J. Wang, W. Jiang, Scripta Mater. 162, 166 (2019)

    Article  CAS  Google Scholar 

  26. J. Tang, Y. Chen, S.R. McCuskey, L. Chen, G.C. Bazan, Z. Liang, Adv. Electron. Mater. 5, 1800943 (2019)

    Article  CAS  Google Scholar 

  27. S. Ghosh, S. Tippireddy, G. Shankar, A. Karati, G. Rogl, P. Rogl, E. Bauer, S.R.K. Malladi, B.S. Murty, S. Suwas, R.C. Mallik, J. Alloys Compd. 880, 160532 (2021)

    Article  CAS  Google Scholar 

  28. L. Deng, J. Ni, J.M. Qin, P.X. Jia, J. Solid State Chem. 255, 129 (2017)

    Article  CAS  Google Scholar 

  29. J.F. Li, W.S. Liu, L.D. Zhao, M. Zhou, NPG Asia Mater. 2, 152 (2010)

    Article  Google Scholar 

  30. G.J. Tan, L.D. Zhao, M.G. Kanatzidis, Chem. Rev. 116, 12123 (2016)

    Article  CAS  PubMed  Google Scholar 

  31. L. Zhang, A. Grytsiv, M. Kerber, P. Rogl, E. Bauer, M. Zehetbauer, J. Wosik, G.E. Nauer, J. Alloys Compd. 481, 106 (2009)

    Article  CAS  Google Scholar 

  32. O.L. Arnache, J. Pino, C.L. Sanchez, J. Mater. Sci: Mater. Electron. 27, 4120 (2016)

    CAS  Google Scholar 

  33. Y. Chu, X. Tang, W. Zhao, Q. Zhang, Cryst. Growth Des. 8, 208 (2008)

    Article  CAS  Google Scholar 

  34. M. Wang, Y. Zhang, M. Muhammed, Nanostruct. Mater. 12, 237 (1999)

    Article  Google Scholar 

  35. L. Kumari, W. Li, J. Huang, P.P. Provencio, Nanoscale Res. Lett. 5, 1698 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. M.U. Kumar, R. Swetha, L. Kumari, J. Electron. Mater. 50, 1735 (2021)

    Article  CAS  Google Scholar 

  37. N. Nandihalli, D.H. Gregory, Adv. Sci. 9, 2106052 (2022)

    Article  CAS  Google Scholar 

  38. Y. Li, C. Li, B. Wang, W. Li, P. Che, J. Alloys Compd. 772, 770 (2019)

    Article  CAS  Google Scholar 

  39. X. Zhou, Y. Yan, X. Lu, H. Zhu, X. Han, G. Chen, Z. Ren, Mater. Today. 21, 1 (2018)

    Google Scholar 

  40. W.S. Liu, B.P. Zhang, J.F. Li, H.L. Zhang, L.D. Zhao, J. Appl. Phys. 102, 103717 (2007)

    Article  Google Scholar 

  41. J.L. Mi, X.B. Zhao, T.J. Zhu, J.P. Tu, G.S. Cao, J. Alloys Compd. 417, 269 (2006)

    Article  CAS  Google Scholar 

  42. A. Gharleghi, Y.H. Pai, F.H. Lin, C.J. Liu, J. Mater. Chem. C 2, 4213 (2014)

    Article  CAS  Google Scholar 

  43. S.S. John, R. Abinaya, S. Harish, E.S. Kumar, J. Archana, M. Navaneethan, J. Alloys Compd. 936, 167801 (2023)

    Article  CAS  Google Scholar 

  44. G. Rogl, J. Bursik, A. Grytsiv, S. Puchegger, V. Soprunyuk, W. Schranz, X. Yan, E. Bauer, P. Rogl, Acta Mater. 145, 359 (2018)

    Article  CAS  Google Scholar 

  45. FULLPROF program, http://www.ill.eu/sites/fullprof/

  46. D. Nath, F. Singh, R. Das, Mater. Chem. Phys. 239, 122021 (2020)

    Article  CAS  Google Scholar 

  47. U. Holzwarth, N. Gibson, Nat. Nanotechnol. 6, 534 (2011)

    Article  CAS  PubMed  Google Scholar 

  48. Y.T. Prabhu, K.V. Rao, V.S.S. Kumar, B.S. Kumari, World J. Nano Sci. Eng. 4, 21 (2014)

    Article  CAS  Google Scholar 

  49. N. Puri, R.K. Gupta, A.K. Pattanaik, R.P. Tandon, M.V.G. Padmavati, A.K. Mahapatro, Integr. Ferroelectr. 205, 66 (2020)

    Article  CAS  Google Scholar 

  50. J.L. Mi, T.J. Zhu, X.B. Zhao, J. Ma, J. Appl. Phys. 101, 054314 (2007)

    Article  Google Scholar 

  51. A. Serrano, O.C. Calero, C.G. Miralles, G. Gorni, C.V. Manzano, M.R. Bravo, A. Moure, M.M. González, J.F. Fernández, J. Appl. Phys. 931, 167534 (2023)

    CAS  Google Scholar 

  52. S.L. Tonquesse, É. Alleno, V. Demange, V. Dorcet, L. Joanny, C. Prestipino, O. Rouleau, M. Pasturel, J. Appl. Phys. 796, 176 (2019)

    Google Scholar 

  53. Y. Lei, W. Gao, R. Zheng, Y. Li, W. Chen, L. Zhang, R. Wan, H. Zhou, Z. Liu, P.K. Chu, ACS Appl. Energy Mater. 2, 4477 (2019)

    Article  CAS  Google Scholar 

  54. G. Rogl, P. Rogl, Sci. Adv. Mater. 3, 517 (2011)

    Article  CAS  Google Scholar 

  55. J. Buršík, V. Buršíková, G. Rogl, P. Rogl, IOP Conf. Ser. : Mater. Sci. Eng. 613, 012036 (2019)

    Article  Google Scholar 

  56. Z. Zhou, M.T. Agne, Q. Zhang, S. Wan, Q. Song, Q. Xu, X. Lu, S. Gu, Y. Fan, W. Jiang, G.J. Snyder, L. Wang, J. Materiomics. 5, 702 (2019)

    Article  Google Scholar 

  57. C. Recknagel, N. Reinfried, P. Höhn, W. Schnelle, H. Rosner, Y. Grin, A.L. Jasper, Sci. Technol. Adv. Mater. 8, 357 (2007)

    Article  CAS  Google Scholar 

  58. S. Peng, J. Sun, B. Cui, X. Meng, D. Qin, Z. Liu, W. Cai, Inorg. Chem. Front. 4, 1697 (2017)

    Article  CAS  Google Scholar 

  59. T. Su, C. He, H. Li, X. Guo, S. Li, H. Ma, X. Jia, J. Electron. Mater. 42, 109 (2013)

    Article  CAS  Google Scholar 

  60. P.F. Wen, P. Li, Q.J. Zhang, Z.W. Ruan, L.S. Liu, P.C. Zhai, J. Electron. Mater. 42, 1443 (2013)

    Article  CAS  Google Scholar 

  61. A. Khan, M. Saleemi, M. Johnsson, L. Han, N.V. Nong, M. Muhammed, M.S. Toprak, J. Alloys Compd. 612, 293 (2014)

    Article  CAS  Google Scholar 

  62. S.H. Kim, M.C. Kim, M.S. Kim, J.P. Ahn, K.S. Moon, S.M. Koo, M.Y. Tafti, J.S. Park, M.S. Toprak, B.H. Lee, D.K. Kim, Adv. Powder Technol. 27, 773 (2016)

    Article  CAS  Google Scholar 

  63. F.S. Sánchez, J.P. Gonjal, N.M. Nemes, N. Biskup, O.J. Dura, J.L. Martínez, M.T.F. Díaz, F. Fauth, J.A. Alonso, ACS Appl. Energy Mater. 1, 6181 (2018)

    Article  Google Scholar 

  64. V. Trivedi, M. Battabyal, P. Balasubramanian, G.M. Muralikrishna, P.K. Jain, R. Gopalan, Sustain. Energy Fuels. 2, 2687 (2018)

    Article  CAS  Google Scholar 

  65. R. Bhardwaj, B. Gahtori, K.K. Johari, S. Bathula, N.S. Chauhan, A. Vishwakarma, S.R. Dhakate, S. Auluck, A. Dhar, ACS Appl. Energy Mater. 2, 1067 (2019)

    Article  CAS  Google Scholar 

  66. A. Bhaskar, Y.W. Yang, Z.R. Yang, F.H. Lin, C.J. Liu, Ceram. Int. 41, 7989 (2015)

    Article  CAS  Google Scholar 

  67. G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105 (2008)

    Article  CAS  PubMed  Google Scholar 

  68. X. Ji, J. He, P. Alboni, Z. Su, N. Gothard, B. Zhang, T.M. Tritt, J.W. Kolis, Phys. stat. sol (RRL). 1, 229231 (2007)

    Article  Google Scholar 

  69. A.L. Jasper, W. Schnelle, H. Rosner, N. Senthil kumaran, A. Rabis, M. Baenitz, A. Gippius, E. Morozova, J.A. Mydosh, Y. Grin, Phys. Rev. Lett. 91, 037208 (2003)

    Article  Google Scholar 

  70. Y. Zhang, C. Li, G. Xu, Z. Dua, C. Guo, J. Li, Int. J. Mat. Res. 101, 808 (2010)

    Article  CAS  Google Scholar 

  71. Y. Zhu, H. Shen, H. Chen, Rare Met. 31, 43 (2012)

    Article  Google Scholar 

  72. W.S. Liu, B.P. Zhang, J.F. Li, L.D. Zhao, J. Phys. D: Appl. Phys. 40, 566 (2007)

    Article  CAS  Google Scholar 

  73. M.S. Toprak, C. Stiewe, D. Platzek, S. Williams, L. Bertini, E. Müller, C. Gatti, Y. Zhang, M. Rowe, M. Muhammed, Adv. Funct. Mater. 14, 1189 (2004)

    Article  CAS  Google Scholar 

  74. A. Banik, K. Biswas, J. Mater. Chem. A 2, 9620 (2014)

    Article  CAS  Google Scholar 

  75. J.X. Zhang, Q.M. Lu, K.G. Liu, L. Zhang, M.L. Zhou, Mater. Lett. 58, 1981 (2004)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by VGST GoK K-FIST (Level 1) under Grant No. VGST/GRD-552-/2016-17/2017-18 awarded Dr. LK. BP and IA acknowledge the Romanian Ministry of Research, Innovation and Digitalization for financial support through the Core Program No. 28 N/2023.

Author information

Authors and Affiliations

Authors

Contributions

MUK: Methodology, Writing—original draft. RS: Conceptualization, BVS: Methodology. RSK: Methodology. LK: Project administration, Conceptualization, supervision, and writing review and editing. BP: Conceptualization and Measurements. IA: characterizations.

Corresponding author

Correspondence to Latha Kumari.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Hereby, I declare that this contribution is original and has not been published anywhere. Also, I declare that this article does not contain any plagiarized materials.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M.U., Swetha, R., Sahana, B.V. et al. Influence of synthesis method and processing on the thermoelectric properties of CoSb3 skutterudites. J Mater Sci: Mater Electron 35, 514 (2024). https://doi.org/10.1007/s10854-024-12277-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12277-1

Navigation