Skip to main content

Advertisement

Log in

Ion leaching of a glass-ionomer glass: an empirical model and effects on setting characteristics and strength

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The release of ions from a glass-ionomer glass, which in the polyacid matrix effects the cross-linking and setting of a cement, can be modelled and initiated by acid-treatment in a dilute acid. This study examined the effect of time of acetic acid leaching on the working time, setting time, and strength of a model GIC. A reactive fluoride glass was immersed in hot acetic acid for 0 (control), 5, 15, 35, 65, 95 and 125 min, filtered and dried. The glass was mixed with an experimental GI liquid in a capsule system and the mixed pastes assessed for working and initial setting time. Compressive strength testing was undertaken according to ISO9917:2003. Immersion time had a significant effect on both working and setting time of the resultant pastes only up to 65 min of immersion, and corresponded with a thin-film ion diffusion model. Compressive strength did not vary significantly with immersion time. The glass-ionomer setting reaction can be conveniently retarded by immersion of the powder in acetic acid, without affecting strength. A reactivity model was developed, whereby the effects of various changes to the leaching process may be usefully examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. CRISP and A. D. WILSON, J. Dent. Res. 53 (1974) 1409.

    Google Scholar 

  2. S. G. GRIFFIN and R. G. HILL, Biomaterials 20 (1999) 1579.

    Article  CAS  Google Scholar 

  3. S. G. GRIFFIN and R. G. HILL, Biomaterials 21 (2000) 399.

    Article  CAS  Google Scholar 

  4. E. DE BARRA and R. G. HILL, Biomaterials 21 (2000) 563.

    Article  Google Scholar 

  5. S. G. GRIFFIN and R. G. HILL, Biomaterials 21 (2000) 693.

    Article  CAS  Google Scholar 

  6. B. S. LIM, H. J. MOON, K. W. BAEK, S. H. HAHN and C. W. KIM, Am. J. Dent. 14 (2001) 241.

    CAS  Google Scholar 

  7. P. N. R. PEREIRA, S. INOKOSHI and J. TAGAMI, J. Dent. 26 (1998) 505.

    Article  CAS  Google Scholar 

  8. G. WESTERMAN, J. HICKS and C. FLAITZ, J. Dent. Child. 67 (2000) 385.

    CAS  Google Scholar 

  9. E. A. WASSON and J. W. NICHOLSON, J. Dent. Res. 72 (1993) 481.

    CAS  Google Scholar 

  10. K. J. ANUSAVICE and N. Z. ZHANG, J. Dent. Res. 77 (1998) 1553.

    CAS  Google Scholar 

  11. P. MILLEDING, A. WENNERBERG, S. ALAEDDIN, S. KARLSSON and E. SIMON, Biomaterials 20 (1999) 733.

    Article  CAS  Google Scholar 

  12. P. MILLEDING, C. HARALDSSON and S. KARLSSON, J. Biomed. Mater. Res. 61 (2002) 541.

    Article  CAS  Google Scholar 

  13. E. A. P. DE MAEYER, R. M. H. VERBEECK and C. W. J. VERCRUYSSE, J. Dent. Res. 78 (1999) 1312.

    Google Scholar 

  14. E. A. P. DE MAEYER, R. M. H. VERBEECK and C. W. J. VERCRUYSSE, J. Dent. Res. 77 (1998) 2005.

    Google Scholar 

  15. T. I. BARRY, D. J. CLINTON and A. D. WILSON, J. Dent. Res. 58 (1979) 1072.

    CAS  Google Scholar 

  16. E. A. P. DE MAEYER and R. M. H. VERBEECK, J. Dent. Res. 80 (2001) 1764.

    Google Scholar 

  17. A. RAFFERTY, R. HILL and D. WOOD, J. Mater. Sci. 35 (2000) 3863.

    Article  CAS  Google Scholar 

  18. A. RAFFERTY, R. HILL, B. KELLEHER and T. O’DWYER, J. Mater. Sci. 38 (2003) 3891.

    Article  CAS  Google Scholar 

  19. A. RAFFERTY, R. G. HILL and D. WOOD, J. Mater. Sci. 38 (2003) 2311.

    Article  CAS  Google Scholar 

  20. R. J. G. DE MOOR and R. M. H. VERBEECK, Dent. Mater. 14 (1998) 261.

    Article  Google Scholar 

  21. M. SCHWEIGER, P. GRONING, L. SCHLAPBACH, W. HØ LAND and V. RHEINBERGER, J. Therm. Anal. 60 (2000) 1009.

    Article  CAS  Google Scholar 

  22. T. MAEDA, K. MUKAEDA, T. SHIMOHIRA and S. KATSUYAMA, J. Dent. Res. 78 (1999) 86.

    Article  CAS  Google Scholar 

  23. A. M. GATTI, G. VALDRE and O. H. ANDERSSON, 15 (1994) 208.

  24. J. A. WILLIAMS, R. W. BILLINGTON and G. J. PEARSON, Biomaterials 23 (2002) 2191.

    Article  CAS  Google Scholar 

  25. ISO, in “ISO9917 Dental water-based cements” (International Organization for Standardization, Geneva, 2003).

    Google Scholar 

  26. J. M. COULSON and J. F. RICHARDSON, in “Chemical engineering. Volume 2: particle technology and separation processes” (Butterworth-Heinemann, Oxford, 1991).

    Google Scholar 

  27. G. J. P. FLEMING, A. A. FAROOQ and J. E. BARRALET, Biomaterials 24 (2003) 4173.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J Tyas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prentice, L.H., Tyas, M.J. & Burrow, M.F. Ion leaching of a glass-ionomer glass: an empirical model and effects on setting characteristics and strength. J Mater Sci: Mater Med 18, 127–131 (2007). https://doi.org/10.1007/s10856-006-0670-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-006-0670-0

Keywords

Navigation