Skip to main content
Log in

Carbonate release from carbonated hydroxyapatite in the wide temperature rage

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Synthetic carbonated apatite ceramics are considered as promising alternative to auto- and allograft materials for bone substitute. The aim of this study was to investigate the thermal stability of an AB-type carbonated apatite in the wide temperature range. The data on the thermal stability have to allow the conditions of the sintering of the ceramics to be controlled. Initial carbonated apatite powders were prepared by interaction between calcium oxide and ammonium hydrogen phosphate with addition of ammonium carbonate. Decomposition process was monitored by infra red spectroscopy, weight loss and X-ray diffraction of solid, and by infra red analysis of condensed gas phase resulted from the thermal decomposition of the sample in equilibrium conditions. Features of carbon monoxide and carbon dioxide release were revealed. The synthesized AB-type carbonated apatite is started to decompose at about 400°C releasing mainly carbon dioxide, but retained some carbonate groups and apatite structure at the temperature 1100°C useful to prepare porous carbonate-apatite ceramics intended for bone tissue engineering scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. R. GIBSON and W. BONFIELD, J. Biomed. Mater. Res. 59 (1998) 697–708.

    Article  CAS  Google Scholar 

  2. H. AOKI, “Science and medical applications of hydroxyapatite” (JAAS, Tokyo, 1991).

  3. I. MAYER and J. D. B. FEATHERSTONE, J. Cryst. Growth 219 (2000) 98–101.

    Article  CAS  Google Scholar 

  4. C. REY, V. RENUGOPALAKRISHNAN, B. COLLINS and M. GLIMCHER, Calcif. Tissue Int. 49 (1991) 251–258.

    CAS  Google Scholar 

  5. R. Z. LEGEROS, O.R. TRAUTZ, E. KLEIN and J. P. LEGEROS, Specialia Experimentia 25 (1969) 5–7.

    Article  CAS  Google Scholar 

  6. Y. DOI, Y. MORIWAKI, M. OKAZAKI, J. TOKAHASHI and K. JOSHIN, J. Dent. Res. 61 (1982) 429–434.

    CAS  Google Scholar 

  7. F.C.M. DRIESSENS, R.M.H. VERBEEK and H.J.M. HEIJIGERS, Inorg. Chem. Acta 80 (1983) 19–23.

    Article  CAS  Google Scholar 

  8. C. REY, B. COLLINS, T. GOEHL, I. R. DICKSON and M. J. GLIMCHER, Calcif. Tissue Int. 45 (1989) 157–164.

    CAS  Google Scholar 

  9. E. LANDI, G. CELOTTI, G. LOGROSCINO and A. TAMPIERI, J. Europ. Ceram. Soc. 23 (2003) 2931–2937.

    Article  CAS  Google Scholar 

  10. J. BARRALET, J.C. KNOWLES, S. BEST and W. BONFIELD, J. Mater. Sci. Mater. Med. 13 (2002) 629– 533.

    Article  Google Scholar 

  11. T.I. IVANOVA, O.V. FRANK-KAMENETSKAYA, A.B. KOL’TSOV and V.L. UGOLKOV, J. Solid State Chem. 160 (2001) 340–349.

    Article  CAS  Google Scholar 

  12. J. E. BARRALET, S. M. BEST and W. BONFIELD, J. Mater. Sci. Mater. Med. 11 (2000) 719–724.

    Article  CAS  Google Scholar 

  13. T. S. SAMPATH KUMAR, I. MANJUBALA and J. GUNASAKERAN, Biomaterials 21 (2000) 1623–1629.

    Article  Google Scholar 

  14. Russian Standard GOST 4530-76 “Calcium carbonate” (Standards, Moscow, 1976).

  15. A. FELTRIN, M. GUIDO and S. NUNZIANTE CESARO, J. Phys. Chem. 97 (1992) 8986–8990.

    Article  CAS  Google Scholar 

  16. S. S. GORELIK, YU. A. SKAKOV, L. N. RASTORGUEV, “X-ray diffraction and electron-optical analysis” (Moscow Steel and Alloys Institute Publ., Moscow, 1994).

    Google Scholar 

  17. J.C. ELLIOTT, “Structure and Chemistry of the Apatites and Other Calcium Phosphates, (Elsevier, Amsterdam, 1994).

    Google Scholar 

  18. R. A. LIDIN, L. L. ANDREEVA and V. A. MOLOCHKO, “Handbook of Inorganic Chemistry” (Chimia, Moscow, 1987).

    Google Scholar 

  19. I. REHMAN and W. BONFIELD, J. Sci. Mater. Med. 8 (1997) 1–4.

    Article  CAS  Google Scholar 

  20. A. G. MAKI, J. Chem. Phys. 35 (1961) 931–935.

    Article  CAS  Google Scholar 

  21. H. VU, M. R. ATWOOD and B. VODAR, J. Chem. Phys. 38 (1963) 2671–2674.

    Article  CAS  Google Scholar 

  22. G. E. LEROY, G. EWING and G. C. PIMENTEL, J. Chem. Phys. 40 (1964) 2298–2303.

    Article  Google Scholar 

  23. J. B. DAVIES and H. E. HALLAM, J. Chem. Soc. Faraday II 68 (1972) 509–513.

    Article  CAS  Google Scholar 

  24. M. J. IRVINE, J. C. MATHIESON and D.E. PULLIN, Austral. J. of Chem. 35 (1982) 1971–1977.

    Article  CAS  Google Scholar 

  25. Nist-ivtanthermo. “Database of thermodynamic properties of individual substances. Developed in Thermocentre of the Russian Academy of Science” (CRC Press, New York, 1993).

  26. Y. DOI, T. SHIBUTANI, Y. MORIWAKI, T. KAJIMOTO and Y. IWAYAMA, J. Biomed. Mater. Res. 39 (1998) 603–610.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Barinov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barinov, S.M., Rau, J.V., Cesaro, S.N. et al. Carbonate release from carbonated hydroxyapatite in the wide temperature rage. J Mater Sci: Mater Med 17, 597–604 (2006). https://doi.org/10.1007/s10856-006-9221-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-006-9221-y

Keywords

Navigation