Skip to main content

Advertisement

Log in

Transmission electron microscope characterisation of molar-incisor-hypomineralisation

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Molar-incisor-hypomineralisation (MIH), one of the major developmental defects in dental enamel, is presenting challenge to clinicians due, in part, to the limited understanding of microstructural changes in affected teeth. Difficulties in the preparation of site-specific transmission electron microscope (TEM) specimens are partly responsible for this deficit. In this study, a dual-beam field emission scanning electron microscope (FESEM)/focused ion beam (FIB) milling instrument was used to prepare electron transparent specimens of sound and hypomineralised enamel. Microstructural analysis revealed that the hypomineralised areas in enamel were associated with marked changes in microstructure; loosely packed apatite crystals within prisms and wider sheath regions were identified. Microstructural changes appear to occur during enamel maturation and may be responsible for the dramatic reduction in mechanical properties of the affected regions. An enhanced knowledge of the degradation of structural integrity in hypomineralised enamel could shed light on more appropriate management strategies for these developmental defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K.L. Weerheijm, B. Jalevik, S. Alaluusua, Molar-incisor hypomineralisation. Caries Res. 35(5), 390–391 (2001)

    Article  CAS  Google Scholar 

  2. A. Leppaniemi, P.L. Lukinmaa, S. Alaluusua, Nonfluoride hypomineralizations in the permanent first molars and their impact on the treatment need. Caries Res. 35(1), 36–40 (2001)

    Article  CAS  Google Scholar 

  3. B. Jälevik, H. Odelius, W. Dietz, J. Norén, Secondary ion mass spectrometry and X-ray microanalysis of hypomineralized enamel in human permanent first molars. Arch. Oral Biol. 46(3), 239–247 (2001)

    Article  Google Scholar 

  4. J. Fearne, P. Anderson, G.R. Davis, 3D X-ray microscopic study of the extent of variations in enamel density in first permanent molars with idiopathic enamel hypomineralisation. Br. Dent. J. 196(10), 634–638 (2004)

    Article  CAS  Google Scholar 

  5. E.K. Mahoney, R. Rohanizadeh, F.S.M. Ismail, N.M. Kilpatrick, M.V. Swain, Mechanical properties and microstructure of hypomineralised enamel of permanent teeth. Biomaterials 25(20), 5091–5100 (2004)

    Article  CAS  Google Scholar 

  6. J. Aizenberg, J.C. Weaver, M.S. Thanawala, V.C. Sundar, D.E. Morse, P. Fratzl, Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309(5732), 275–278 (2005)

    Article  CAS  Google Scholar 

  7. S. Kamat, X. Su, R. Ballarini, A.H. Heuer, Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature 405(6790), 1036–1040 (2000)

    Article  CAS  Google Scholar 

  8. G.A. Macho, Y. Jiang, I.R. Spears, Enamel microstructure—a truly three-dimensional structure. J. Hum. Evol. 45, 81–90 (2003)

    Article  Google Scholar 

  9. B. Jälevik, J.G. Norén, Enamel hypomineralization of permanent first molars: a morphological study and survey of possible aetiological factors. Int. J. Paediatr. Dent. 10(4), 278–289 (2000)

    Article  Google Scholar 

  10. B. Jälevik, W. Dietz, J.G. Norén, Scanning electron micrograph analysis of hypomineralized enamel in permanent first molars. Int. J. Paediatr. Dent. 15, 233–240 (2005)

    Article  Google Scholar 

  11. R.M. Frank, Electron microscopy of undecalcied sections of human adult dentine. Arch. Oral Biol. 1(1), 29–32 (1959)

    Article  CAS  Google Scholar 

  12. K. Hoshi, S. Ejiri, W. Probst, V. Seybold, T. Kamino, T. Yaguchi, N. Yamahira, H. Ozawa, Observation of human dentine by focused ion beam and energy-filtering transmission electron microscopy. J. Microsc. 201(1), 44–49 (2001)

    Article  CAS  Google Scholar 

  13. R.K. Nalla, A.E. Porter, C. Daraio, A.M. Minor, V. Radmilovic, E.A. Stach, A.P. Tomsia, R.O. Ritchie, Ultrastructural examination of dentin using focused ion-beam cross-sectioning and transmission electron microscopy. Micron 36(7–8), 672–680

  14. E. Mahoney, F.S. Ismail, N. Kilpatrick, M. Swain, Mechanical properties across hypomineralized/hypoplastic enamel of first permanent molar teeth. Eur. J. Oral Sci. 112(6), 497–502 (2004)

    Article  Google Scholar 

  15. E. Mahoney, A. Holt, M. Swain, N. Kilpatrick, The hardness and modulus of elasticity of primary molar teeth: an ultra-micro-indentation study. J. Dent. 28(8), 589–594 (2000)

    Article  CAS  Google Scholar 

  16. Z.H. Xie, M. Hoffman, P. Munroe, R. Singh, A. Bendavid, P. Martin, Microstructural response of TiN monolithic and multilayer coatings during microscratch testing. J. Mater. Res. 22(8), 2312–2318 (2007)

    Article  CAS  Google Scholar 

  17. Z.H. Xie, M. Hoffman, R.J. Moon, P.R. Munroe, Deformation processes in a hard coating on ductile substrate system during nanoindentation: role of coating microstructure. J. Mater. Res. 21(2), 437–447 (2006)

    Article  CAS  Google Scholar 

  18. M.-S. Letty, H.-K. Marlene, Dental and Oral Tissues: An Introduction, 2nd edn. (Lea & Febiger, Philadelphia, PA USA, 1985), p. 236

    Google Scholar 

  19. J. Ge, F.Z. Cui, X.M. Wang, H.L. Feng, Property variations in the prism and the organic sheath within enamel by nanoindentation. Biomaterials 26(16), 3333–3339 (2005)

    Article  CAS  Google Scholar 

  20. S.N. White, W. Luo, M.L. Paine, H. Fong, M. Sarikaya, M.L. Snead, Biological organization of hydroxyapatite crystallites into a fibrous continuum toughens and controls anisotropy in human enamel. J. Dent. Res. 80(1), 321–326 (2001)

    Article  CAS  Google Scholar 

  21. M.L. Paine, S.N. White, W. Luo, H. Fong, M. Sarikaya, M.L. Snead, Regulated gene expression dictates enamel structure and tooth function. Matrix Biol. 20, 273–292 (2001)

    Article  CAS  Google Scholar 

  22. A. Veis, A window on biomineralisation. Science 307, 1419–1420 (2005)

    Article  CAS  Google Scholar 

  23. B. Jalevik, Enamel hypomineralization in permanent first molars. A clinical, histomorphological and biochemical study. Swed. Dent. J. Suppl. 149, 1–86 (2001)

    Google Scholar 

  24. S. Suga, Enamel hypomineralization viewed from the pattern of progressive mineralization of human and monkey developing enamel. Adv. Dent. Res. 3(2), 188–198 (1989)

    CAS  Google Scholar 

  25. Z.H. Xie, M.V. Swain, P.R. Munroe, M. Hoffman, On the critical parameters that regulate the mechanical behaviour of tooth enamel. Biomaterials. doi:10.1016/j.biomaterials.2008.02.022

  26. V. William, M.F. Burrow, J.E. Palamara, L.B. Messer, Microshear bond strength of resin composite to teeth affected by molar hypomineralisation using two adhesive systems. Paediatr. Dent. 28, 233–241 (2006)

    Google Scholar 

Download references

Acknowledgement

The authors thank Ms Sonia Afsari for assistance in sample preparation. An ARC Postdoctoral Fellowship for Dr Zonghan Xie is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zonghan Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Z., Kilpatrick, N.M., Swain, M.V. et al. Transmission electron microscope characterisation of molar-incisor-hypomineralisation. J Mater Sci: Mater Med 19, 3187–3192 (2008). https://doi.org/10.1007/s10856-008-3441-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3441-2

Keywords

Navigation