Skip to main content

Advertisement

Log in

Biomineralization capability of adherent bio-glass films prepared by magnetron sputtering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

An Erratum to this article was published on 12 March 2010

Abstract

Radiofrequency magnetron sputtering deposition at low temperature (150°C) was used to deposit bioactive glass coatings onto titanium substrates. Three different working atmospheres were used: Ar 100%, Ar + 7%O2, and Ar + 20%O2. The preliminary adhesion tests (pull-out) produced excellent adhesion values (~75 MPa) for the as-deposited bio-glass films. Bioactivity tests in simulated body fluid were carried out for 30 days. SEM–EDS, XRD and FTIR measurements were performed. The tests clearly showed strong bioactive features for all the prepared films. The best biomineralization capability, expressed by the thickest chemically grown carbonated hydroxyapatite layer, was obtained for the bio-glass coating sputtered in a reactive atmosphere with 7% O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lossdorfer S, Schwartz Z, Lohmann CH, Greenspan DC, Ranly DM, Boyan BD. Osteoblast response to bioactive glasses in vitro correlates with inorganic phosphate content. Biomaterials. 2004;25:2547–55.

    Article  CAS  PubMed  Google Scholar 

  2. Cerruti M, Greenspan D, Powers K. Effects of pH and ionic strength on the reactivity of Bioglass® 45S5. Biomaterials. 2005;26:1665–74.

    Article  CAS  PubMed  Google Scholar 

  3. Saranti A, Koutselas I, Karakassides MA. Bioactive glasses in the system CaO–B2O3–P2O5: preparation, structural study and in vitro evaluation. J Non-Cryst Solids. 2006;352:390–8.

    Article  CAS  ADS  Google Scholar 

  4. Andrade AL, Valério P, Goes AM, de Fatima Leite M, Domingues RZ. Influence of morphology on in vitro compatibility of bioactive glasses. J Non-Cryst Solids. 2006;352:3508–11.

    Article  CAS  ADS  Google Scholar 

  5. Chen QZ, Thompson ID, Boccaccini AR. 45S5 Bioglass (R)-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials. 2006;27(11):2414–25.

    Article  CAS  PubMed  Google Scholar 

  6. Yan X, Huang X, Yu C, Deng H, Wang Y, Zhang Z, et al. The in vitro bioactivity of mesoporous bioactive glasses. Biomaterials. 2006;27:3396–903.

    Article  CAS  PubMed  Google Scholar 

  7. Agathopoulos S, Tulyaganov DU, Ventura JMG, Kannan S, Karakassides MA, Ferreira JMF. Formation of hydroxyapatite onto glasses of the CaO–MgO–SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives. Biomaterials. 2006;27:1832–40.

    Article  CAS  PubMed  Google Scholar 

  8. Balamurugan A, Balossier G, Kannan S, Michel J, Rebelo AHS, Ferreira JMF. Development and in vitro characterization of sol–gel derived CaO–P2O5–SiO2–ZnO bioglass. Acta Biomater. 2007;3:255–62.

    Article  CAS  PubMed  Google Scholar 

  9. Mardare CC, Mardare AI, Fernandes JRF, Joanni E, Pina SCA, Fernandes MHV, et al. Deposition of bioactive glass-ceramic thin-films by RF magnetron sputtering. J Eur Cer Soc. 2003;23:1027–30.

    Article  CAS  Google Scholar 

  10. Lopez-Esteban S, Saiz E, Fujino S, Oku T, Suganuma K, Tomsia AP. Bioactive glass coatings for orthopedic metallic implants. J Eur Cer Soc. 2003;23:2921–30.

    Article  CAS  Google Scholar 

  11. Liste S, Serra J, Gonzalez P, Borrajo JP, Chiussi S, Leon B, et al. The role of the reactive atmosphere in pulsed laser deposition of bioactive glass films. Thin Solid Films. 2004;453–454:224–8.

    Article  Google Scholar 

  12. Izquierdo-Barba I, Conde F, Olmo N, Lizarbe MA, Garcia MA, Vallet-Regi M. Vitreous SiO2–CaO coatings on Ti6Al4 V alloys: reactivity in simulated body fluid versus osteoblast cell culture. Acta Biomater. 2006;2:445–55.

    Article  CAS  PubMed  Google Scholar 

  13. Borrajo JP, Serra J, Gonzalez P, Léon B, Munoz FM, Lopez M. In vivo evaluation of titanium implants coated with bioactive glass by pulsed laser deposition. J Mater Sci Mater Med. 2007;18:2371–6. doi:10.1007/s10856-007-3153-z.

    Article  CAS  PubMed  Google Scholar 

  14. Fathi MH, Doost Mohammadi A. Preparation and characterization of sol–gel bioactive glass coating for improvement of biocompatibility of human body implant. Mater Sci Eng A. 2008;474:3–128.

    Google Scholar 

  15. Zhao Y, Song M, Chen C, Liu J. The role of the pressure in pulsed laser deposition of bioactive glass films. J Non-Cryst Solids. 2008;354:4000–4.

    Article  CAS  ADS  Google Scholar 

  16. Berbecaru C, Alexandru HV, Ianculescu A, Popescu A, Socol G, Sima F, et al. Bioglass thin films for biomimetic implants. Appl Surf Sci. 2009;255(10):5476–9.

    Article  CAS  ADS  Google Scholar 

  17. Peddi L, Brow RK, Brown RF. Bioactive borate glass coatings for titanium alloys. J Mater Sci Mater Med. 2008;19:3145–52. doi:10.1007/s10856-008-3419-0.

    Article  CAS  PubMed  Google Scholar 

  18. Goller G. The effect of bond coat on mechanical properties of plasma sprayed Bioglass-titanium coatings. Ceram Int. 2004;30:351–5.

    Article  CAS  Google Scholar 

  19. Hench LL, Wilson J. An introduction to bioceramics. 1st ed. Singapore: World Scientific Publishing Company; 1993.

    Google Scholar 

  20. Saiz E, Tomsia AP, Fujino S, Gomez-Vega JM. Graded coatings for metallic implant alloys. In: Lewinsohn CA, Singh M, Loehman R, editors. Ceramic transactions: advances in joining of ceramics. 2000. p. 159–72.

  21. Wasa K, Kitabatake M, Adachi H. Thin film materials technology: sputtering of compound materials. New York: Noyes Publications; 2003.

    Google Scholar 

  22. Agathopoulos S, Tulyaganov DU, Valério P, Ferreira JMF. A new model formulation of the SiO2–Al2O3–B2O3–MgO–CaO–Na2O–F glass-ceramics. Biomaterials. 2005;26:2255–64.

    Article  CAS  PubMed  Google Scholar 

  23. Agathopoulos S, Tulyaganov DU, Ventura JMG, Kannan S, Saranti A, Karakassides MA, et al. Structural analysis and devitrification of glasses based on the CaO–MgO–SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives. J Non-Cryst Solids. 2006;352:322–8.

    Article  CAS  ADS  Google Scholar 

  24. Tulyaganov DU, Agathopoulos S, Ventura JMG, Karakassides MA, Fabrichnaya O, Ferreira JMF. Synthesis of glass–ceramics of CaO–MgO–SiO2 system containing B2O3, P2O5, Na2O and CaF2. J Eur Cer Soc. 2006;26:1463–71.

    Article  CAS  Google Scholar 

  25. Tulyaganov DU, Agathopoulos S, Fernandes HR, Ferreira JMF. Processing of glass-ceramics in the SiO2–Al2O3–B2O3–MgO–CaO–Na2O–(P2O5)–F system via sintering and crystallization of glass powder compacts. Ceram Int. 2006;32:195–200.

    Article  CAS  Google Scholar 

  26. Epple M, Bäuerlein E. Handbook of biomineralization: medical and clinical aspects. NY: Wiley; 2009.

    Google Scholar 

  27. Kokubo T, Kushitani H, Ohtsuki C, Sakka S, Yamamuro T. Effects of ions dissolved from bioactive glass-ceramic on the surface apatite formation. J Mater Sci Mater Med. 1993;4:1–4.

    Article  CAS  Google Scholar 

  28. Swanepoel RJ. Determination of the thickness and optical constants of amorphous silicon. J Phys E Sci Instrum. 1983;16:1214–22.

    Article  CAS  ADS  Google Scholar 

  29. Güttler D, Abendroth B, Grötzschel R, Möller W, Depla D. Mechanisms of target poisoning during magnetron sputtering as investigated by real-time in situ analysis and collisional computer simulation. Appl Phys Lett. 2004;85(25):6134–6.

    Article  ADS  Google Scholar 

  30. Rosen D. Defining the surface binding energy in dynamic Monte Carlo simulation for reactive sputtering of compounds. Vacuum. 2006;80:944–8.

    Article  CAS  Google Scholar 

  31. Berg S, Nyberg T. Fundamental understanding and modeling of reactive sputtering processes. Thin Solid Films. 2005;476(2):215–30.

    Article  CAS  ADS  Google Scholar 

  32. Rosen D, Katardjiev I, Berg S, Moller W. TRIDYN simulation of target poisoning in reactive sputtering. Nucl Instrum Methods Phys Res B. 2005;228:193–7.

    Article  CAS  ADS  Google Scholar 

  33. Ding SJ. Properties and immersion behavior of magnetron-sputtered multilayered hydroxyapatite/titanium composite coatings. Biomaterials. 2003;24:4233–8.

    Article  CAS  PubMed  Google Scholar 

  34. Stan GE, Morosanu CO, Marcov DA, Pasuk I, Miculescu F, Reumont G. Effect of annealing upon the structure and adhesion properties of sputtered bio-glass/titanium coatings. Appl Surf Sci. 2009;255:9132–8.

    Article  CAS  ADS  Google Scholar 

  35. Juhasz JA, Best SM, Auffret AD, Bonfield W. Biological control of apatite growth in simulated body fluid and human blood serum. J Mater Sci Mater Med. 2008;19(4):1823–9.

    Article  CAS  PubMed  Google Scholar 

  36. Stan GE, Ferreira JMF. An algorithm for preparing bioactive fluorinated hydroxyapatite coatings by sol gel technique. J Optoelectron Adv Mater. 2007;9(8):2539–42.

    CAS  Google Scholar 

  37. Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.

    Article  CAS  Google Scholar 

  38. Hench LL. The story of Bioglass®. J Mater Sci Mater Med. 2006;17:967–78. doi:10.1007/s10856-006-0432-z.

    Article  CAS  PubMed  Google Scholar 

  39. Kim CY, Clark AE, Hench LL. Early stages of calcium-phosphate formation in bioglasses. J Non-Cryst Solids. 1989;113:195–202.

    Article  CAS  ADS  Google Scholar 

  40. Hill R. An alternative view of the degradation of bioglass. J Mater Sci Lett. 1996;15:1122–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to CICECO for the support and to the Portuguese Foundation for Science and Technology for the fellowship grants of S. Pina (SFRH/BD/21761/2005) and to Romanian Ministry of Education and Research for the scientific projects support: CEEX 307/2006 and PN II 71-110/2007. The financial support of “BD” PhD research scholarship offered by CNCSIS is also gratefully acknowledged by G.E. Stan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Stan.

Additional information

C. O. Morosanu: Deceased.

An erratum to this article can be found at http://dx.doi.org/10.1007/s10856-010-4040-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stan, G.E., Pina, S., Tulyaganov, D.U. et al. Biomineralization capability of adherent bio-glass films prepared by magnetron sputtering. J Mater Sci: Mater Med 21, 1047–1055 (2010). https://doi.org/10.1007/s10856-009-3940-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3940-9

Keywords

Navigation