Skip to main content
Log in

Kinetic characterization and comparison of various protein crosslinking reagents for matrix modification

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

We have characterized the relative efficacies of a number of protein crosslinking agents that have the potential for use in the crosslinking of proteinaceous matrices both in vitro and in vivo. The crosslinkers tested were; l-threose (LT), Genipin (GP), Methylglyoxal (MG), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), proanthrocyanidin (PA) and glutaraldehyde (GA). The relative effectiveness of the crosslinkers with regard to their saturating concentrations was: GA > PA > EDC > MG = GP ≫ LT. Most of the crosslinkers displayed a pH dependence and were more effective at more alkaline pH. At optimal pH and saturating conditions, the relative reaction rates of the crosslinkers were: PA = GA > EDC > GP > MG ≫ LT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hoffmann B, Seitz D, Mencke A, Kokott A, Ziegler G. Glutaraldehyde and oxidised dextran as crosslinker reagents for chitosan-based scaffolds for cartilage tissue engineering. J Mater Sci Mater Med. 2009;20:1495–503.

    Article  CAS  PubMed  Google Scholar 

  2. Mwale F, Iordanova M, Demers CN, Steffen T, Roughley P, Antoniou J. Biological evaluation of chitosan salts cross-linked to genipin as a cell scaffold for disk tissue engineering. Tissue Eng. 2005;11:130–40.

    Article  CAS  PubMed  Google Scholar 

  3. O’Halloran DM, Collighan RJ, Griffin M, Pandit AS. Characterization of a microbial transglutaminase cross-linked type II collagen scaffold. Tissue Eng. 2006;12:1467–74.

    Article  Google Scholar 

  4. Wu X, Black L, Santacana-Laffitte G, Patrick CW Jr. Preparation and assessment of glutaraldehyde-crosslinked collagen-chitosan hydrogels for adipose tissue engineering. J Biomed Mater Res A. 2007;81:59–65.

    PubMed  Google Scholar 

  5. Yang SH, Hsu CK, Wang KC, Hou SM, Lin FH. Tricalcium phosphate and glutaraldehyde crosslinked gelatin incorporating bone morphogenetic protein—a viable scaffold for bone tissue engineering. J Biomed Mater Res B Appl Biomater. 2005;74:468–75.

    PubMed  Google Scholar 

  6. Kim SS, Lim SH, Cho SW, Gwak SJ, Hong YS, Chang BC, et al. Tissue engineering of heart valves by recellularization of glutaraldehyde-fixed porcine valves using bone marrow-derived cells. Exp Mol Med. 2006;38:273–83.

    CAS  PubMed  Google Scholar 

  7. Zhai W, Chang J, Lin K, Wang J, Zhao Q, Sun X. Crosslinking of decellularized porcine heart valve matrix by procyanidins. Biomaterials. 2006;27:3684–90.

    CAS  PubMed  Google Scholar 

  8. Gratzer PF, Lee JM. Control of pH alters the type of cross-linking produced by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) treatment of acellular matrix vascular grafts. J Biomed Mater Res. 2001;58:172–9.

    Article  CAS  PubMed  Google Scholar 

  9. Chachra D, Gratzer PF, Pereira CA, Lee JM. Effect of applied uniaxial stress on rate and mechanical effects of cross-linking in tissue-derived biomaterials. Biomaterials. 1996;17:1865–75.

    Article  CAS  PubMed  Google Scholar 

  10. Duan X, Sheardown H. Crosslinking of collagen with dendrimers. J Biomed Mater Res A. 2005;75:510–8.

    CAS  PubMed  Google Scholar 

  11. Han B, Jaurequi J, Tang BW, Nimni ME. Proanthocyanidin: a natural crosslinking reagent for stabilizing collagen matrices. J Biomed Mater Res A. 2003;65:118–24.

    Article  PubMed  Google Scholar 

  12. Roe SC, Milthorpe BK, Schindhelm K. Collagen cross-linking and resorption: effect of glutaraldehyde concentration. Artif Organs. 1990;14:443–8.

    Article  CAS  PubMed  Google Scholar 

  13. Sung HW, Liang IL, Chen CN, Huang RN, Liang HF. Stability of a biological tissue fixed with a naturally occurring crosslinking agent (genipin). J Biomed Mater Res. 2001;55:538–46.

    Article  CAS  PubMed  Google Scholar 

  14. Guldner NW, Jasmund I, Zimmermann H, Heinlein M, Girndt B, Meier V, et al. Detoxification and endothelialization of glutaraldehyde-fixed bovine pericardium with titanium coating: a new technology for cardiovascular tissue engineering. Circulation. 2009;119:1653–60.

    Article  CAS  PubMed  Google Scholar 

  15. Adams MA, Roughley PJ. What is intervertebral disc degeneration, and what causes it? Spine. 2006;31:2151–61.

    Article  PubMed  Google Scholar 

  16. Martin MD, Boxell CM, Malone DG. Pathophysiology of lumbar disc degeneration: a review of the literature. Neurosurg Focus. 2002;13:1–6.

    Article  Google Scholar 

  17. Acaroglu ER, Iatridis JC, Setton LA, Foster RJ, Mow VC, Weidenbaum M. Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus. Spine. 1995;20:2690–701.

    Article  CAS  PubMed  Google Scholar 

  18. Chuang SY, Odono RM, Hedman TP. Effects of exogenous crosslinking on in vitro tensile and compressive moduli of lumbar intervertebral discs. Clin Biomech. 2007;22:14–20.

    Article  Google Scholar 

  19. Hedman T, Odono R, Shung KCS-Y. Effects of exogenous crosslinking on compressive load sharing in the intervertebral disc. Orthop Trans. 2006;31:51.

    Google Scholar 

  20. Hedman T, Han B, Loree H. In vivo validation of collagen crosslink augmentation in a rat tail model. Orthop Trans. 2008;33:339.

    Google Scholar 

  21. Hedman TP, Saito H, Vo C, Chuang SY. Exogenous cross-linking increases the stability of spinal motion segments. Spine. 2006;31:480–5.

    Article  Google Scholar 

  22. Murata-Kamiya N, Kamiya H. Methylglyoxal, an endogenous aldehyde, crosslinks DNA polymerase and the substrate DNA. Nucleic Acids Res. 2001;29:3433–8.

    Article  CAS  PubMed  Google Scholar 

  23. Sung HW, Chang Y, Liang IL, Chang WH, Chen YC. Fixation of biological tissues with a naturally occurring crosslinking agent: fixation rate and effects of pH, temperature, and initial fixative concentration. J Biomed Mater Res. 2000;52:77–87.

    Article  CAS  PubMed  Google Scholar 

  24. Kim KM, Herrera GA, Battarbee HD. Role of glutaraldehyde in calcification of porcine aortic valve fibroblasts. Am J Pathol. 1999;154:843–52.

    CAS  PubMed  Google Scholar 

  25. Zhang M, Vogel HJ. Determination of the side chain pKa values of the lysine residues in calmodulin. J Biol Chem. 1993;268:22420–8.

    CAS  PubMed  Google Scholar 

  26. Ulrich P, Cerami A. Protein glycation, diabetes, and aging. Recent Prog Horm Res. 2001;56:1–21.

    Article  CAS  PubMed  Google Scholar 

  27. Verzijl N, De Groot J, Ben ZC, Brau-Benjamin O, Maroudas A, Bank RA, et al. Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: a possible mechanism through which age is a risk factor for osteoarthritis. Arthritis Rheum. 2002;46:114–23.

    Article  CAS  PubMed  Google Scholar 

  28. Lapolla A, Flamini R, Dalla VA, Senesi A, Reitano R, Fedele D, et al. Glyoxal and methylglyoxal levels in diabetic patients: quantitative determination by a new GC/MS method. Clin Chem Lab Med. 2003;41:1166–73.

    Article  CAS  PubMed  Google Scholar 

  29. Mirza MA, Kandhro AJ, Memon SQ, Khuhawar MY, Arain R. Determination of glyoxal and methylglyoxal in the serum of diabetic patients by MEKC using stilbenediamine as derivatizing reagent. Electrophoresis. 2007;28:3940–7.

    Article  CAS  PubMed  Google Scholar 

  30. Chellan P, Nagaraj RH. Protein crosslinking by the Maillard reaction: dicarbonyl-derived imidazolium crosslinks in aging and diabetes. Arch Biochem Biophys. 1999;368:98–104.

    Article  CAS  PubMed  Google Scholar 

  31. Murata-Kamiya N, Kamiya H, Kaji H, Kasai H. Methylglyoxal induces G:C to C:G and G:C to T:A transversions in the supF gene on a shuttle vector plasmid replicated in mammalian cells. Mutat Res. 2000;468:173–82.

    CAS  PubMed  Google Scholar 

  32. Wagner DR, Reiser KM, Lotz JC. Glycation increases human annulus fibrosus stiffness in both experimental measurements and theoretical predictions. J Biomech. 2006;39:1021–9.

    Article  PubMed  Google Scholar 

  33. Sung HW, Chang WH, Ma CY, Lee MH. Crosslinking of biological tissues using genipin and/or carbodiimide. J Biomed Mater Res A. 2003;64:427–38.

    Article  PubMed  Google Scholar 

  34. Sung HW, Chang Y, Chiu CT, Chen CN, Liang HC. Crosslinking characteristics and mechanical properties of a bovine pericardium fixed with a naturally occurring crosslinking agent. J Biomed Mater Res. 1999;47:116–26.

    Article  CAS  PubMed  Google Scholar 

  35. Sung HW, Chang Y, Chiu CT, Chen CN, Liang HC. Mechanical properties of a porcine aortic valve fixed with a naturally occurring crosslinking agent. Biomaterials. 1999;20:1759–72.

    Article  CAS  PubMed  Google Scholar 

  36. Yerramalli CS, Chou AI, Miller GJ, Nicoll SB, Chin KR, Elliott DM. The effect of nucleus pulposus crosslinking and glycosaminoglycan degradation on disc mechanical function. Biomech Model Mechanobiol. 2007;6:13–20.

    Article  CAS  PubMed  Google Scholar 

  37. Huang LL, Sung HW, Tsai CC, Huang DM. Biocompatibility study of a biological tissue fixed with a naturally occurring crosslinking reagent. J Biomed Mater Res. 1998;42:568–76.

    Article  CAS  PubMed  Google Scholar 

  38. Tsai CC, Huang RN, Sung HW, Liang HC. In vitro evaluation of the genotoxicity of a naturally occurring crosslinking agent (genipin) for biologic tissue fixation. J Biomed Mater Res. 2000;52:58–65.

    Article  CAS  PubMed  Google Scholar 

  39. Bannister DW, Burns AB. Adaptation of the Bergman and Loxley technique for hydroxyproline determination to the autoanalyzer and its use in determining plasma hydroxyproline in the domestic fowl. Analyst. 1970;95:596–600.

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Berg RA. Determination of 3- and 4-hydroxyproline. Methods Enzymol 1982;82 Pt A:372–98.

    Google Scholar 

  41. Prockop DJ, Udenfriend S, Lindstedt S. A simple technique for measuring the specific activity of labeled hydroxyproline in biological materials. J Biol Chem. 1961;236:1395–8.

    CAS  PubMed  Google Scholar 

  42. Reddy GK, Enwemeka CS. A simplified method for the analysis of hydroxyproline in biological tissues. Clin Biochem. 1996;29:225–9.

    Article  CAS  PubMed  Google Scholar 

  43. Stegemann H, Stalder K. Determination of hydroxyproline. Clin Chim Acta. 1967;18:267–73.

    Article  CAS  PubMed  Google Scholar 

  44. Tsugita A, Scheffler JJ. A rapid method for acid hydrolysis of protein with a mixture of trifluoroacetic acid and hydrochloric acid. Eur J Biochem. 1982;124:585–8.

    Article  CAS  PubMed  Google Scholar 

  45. Charulatha V, Rajaram A. Influence of different crosslinking treatments on the physical properties of collagen membranes. Biomaterials. 2003;24:759–67.

    Article  CAS  PubMed  Google Scholar 

  46. Nimni ME, Cheung D, Strates B, Kodama M, Sheikh K. Chemically modified collagen: a natural biomaterial for tissue replacement. J Biomed Mater Res. 1987;21:741–71.

    Article  CAS  PubMed  Google Scholar 

  47. Petite H, Frei V, Huc A, Herbage D. Use of diphenylphosphorylazide for cross-linking collagen-based biomaterials. J Biomed Mater Res. 1994;28:159–65.

    Article  CAS  PubMed  Google Scholar 

  48. Vasudev SC, Chandy T. Effect of alternative crosslinking techniques on the enzymatic degradation of bovine pericardia and their calcification. J Biomed Mater Res. 1997;35:357–69.

    Article  CAS  PubMed  Google Scholar 

  49. Eyre DR, Muir H. Quantitative analysis of types I and II collagens in human intervertebral discs at various ages. Biochim Biophys Acta. 1977;492:29–42.

    CAS  PubMed  Google Scholar 

  50. Lowry OH, Rourke Gilligan D, Ketersky EM. The determination of collagen and elastin in tissues, with results obtained in various normal tissues from different species. J Biol Chem. 1941;139:795–804.

    CAS  Google Scholar 

  51. Svejcar J, Prerovsky I, Linhart J, Kruml J. Content of collagen, elastin, and water in walls of the internal saphenous vein in man. Circ Res. 1962;11:296–300.

    CAS  PubMed  Google Scholar 

  52. Ignat’eva NYu, Danilov NA, Averkiev SV, Obrezkova MV, Lunin VV, Sobol EN. Determination of hydroxyproline in tissues and the evaluation of the collagen content of the tissues. J Anal Chem. 2007;62:51–7.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Institutes of Health (1R43 AR055014-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Slusarewicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slusarewicz, P., Zhu, K. & Hedman, T. Kinetic characterization and comparison of various protein crosslinking reagents for matrix modification. J Mater Sci: Mater Med 21, 1175–1181 (2010). https://doi.org/10.1007/s10856-010-3986-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-3986-8

Keywords

Navigation