Skip to main content
Log in

Poly(2-hydroxyethyl methacrylate-co-dodecyl methacrylate-co-acrylic acid): synthesis, physico-chemical characterisation and nafcillin carrier

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In the present study polymeric microbeads of poly(2-hydroxyethyl methacrylate-co-dodecyl methacrylate-co-acrylic acid) or p(HEMA-co-dDMA-co-AA) were synthesised and characterized through FT-IR and scanning electron microscopy (SEM); their swelling behavior against saline solution was explored and their in vitro cytotoxicity was evaluated. Further, in order to elucidate kinetic aspects regarding the ternary system p(HEMA-co-dDMA-co-AA), a mathematical model of the reactivity ratios of the comonomers in the terpolymer has been conceived and analyzed. An intensified tendency of AA units accumulation in the copolymer has been noticed, in spite of HEMA units, while dDMA conserves in the copolymer the fraction from the feed. Three compositions have been selected for nafcillin-loading and their in vitro release capacity was evaluated. The compositions of 80:10:10 and 75:10:15 M ratios appear suitable for further in vivo testing, in order to be used as drug delivery systems in the treatment of different osseous diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brannon-Peppas L. Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery. Int J Pharm. 1995;116:1–9.

    Article  CAS  Google Scholar 

  2. De Wit M, Raabe A, Tuinmann G, Hossfeld DK. Implantable device for intravenous drug delivery in the rat. Lab Anim. 2001;35:321–4.

    Article  PubMed  Google Scholar 

  3. Branco MC, Schneider JP. Self-assembling materials for therapeutic delivery. Acta Biomater. 2009;5:817–31.

    Article  CAS  PubMed  Google Scholar 

  4. Kim S, Kim J-H, Jeon O, Kwon IC, Park K. Engineered polymers for advanced drug delivery. Eur J Pharm Biopharm. 2009;71:420–30.

    Article  CAS  PubMed  Google Scholar 

  5. Elvira C, Gallardo A, San Roman J, Cifuentes A. Covalent polymer-drug conjugates. Molecules. 2005;10:114–25.

    Article  CAS  PubMed  Google Scholar 

  6. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:3413–31.

    Article  CAS  PubMed  Google Scholar 

  7. Nair LS, Laurencin CT. Polymers as biomaterials for tissue engineering and controlled drug delivery. Adv Biochem Eng/Biotechnol. 2006;102:47–90.

    Article  CAS  Google Scholar 

  8. Ringsdorf H. Structure and properties of pharmacologically active polymers. J Polym Sci Polym Symp. 1975;51:135–53.

    Article  CAS  Google Scholar 

  9. Norden CW, Bryant R, Palmer D, Montgomerie JZ, Wheat J. Chronic osteomyelitis caused by Staphylococcus aureus: controlled clinical trial of nafcillin therapy and nafcillin-rifampin therapy. South Med J. 1986;79:947–51.

    Article  CAS  PubMed  Google Scholar 

  10. Pillai RR, Somayaji SN, Rabinovich M, Hudson MC, Gonsalves KE. Nafcillin-loaded PLGA nanoparticles for treatment of osteomyelitis. Biomed Mater. 2008;3:034114.

    Article  PubMed  Google Scholar 

  11. Lacey RW, Stokes A. Susceptibility of the “penicillinase-resistant” penicillins and cephalosporins to penicillinase of Staphylococcus aureus. J Clin Pathol. 1977;30:35–9.

    Article  CAS  PubMed  Google Scholar 

  12. Sato K, Lin TY, Weintrub L. Bacteriological efficacy of nafcillin and vancomycin alone or combined with rifampicin or amikacin in experimental meningitis due to methicillin-susceptible or -resistant Staphylococcus aureus. Jpn J Antibiotics. 1985;38:2155–62.

    CAS  Google Scholar 

  13. Katime I, Sáez V, Hernáez E. Nafcillin release from poly(acrylic acid–co–methyl methacrylate) hydrogels. Polym Bull. 2005;55:403–9.

    Article  CAS  Google Scholar 

  14. Chan V. Influence of temperature and drug concentration on nafcillin precipitation [1]. Am J Health-System Pharm. 2005;62:1347–8.

    Article  Google Scholar 

  15. Katime I, Valderruten N, Quintana JR. Controlled release of aminophylline from poly(N-isopropylacrylamide-co-itaconic acid) hydrogels. Polym Int. 2001;50:869–79.

    Article  CAS  Google Scholar 

  16. Duncan R. Drug-polymer conjugates: potential for improved chemotherapy. Anti-Cancer Drugs. 1992;3:175–210.

    Article  CAS  PubMed  Google Scholar 

  17. Duncan R. Polymer conjugates for tumour targeting and intracytoplasmic delivery. The EPR effect as a common gateway? Pharm Sci Technol Today. 1999;2:441–9.

    Article  CAS  PubMed  Google Scholar 

  18. Putman D, Kopecek J. Polymer conjugates with anticancer activity. Adv Polym Sci. 1995;122:55–123.

    Google Scholar 

  19. Mabilleau G, Stancu IC, Honore T, Legeay G, Cincu C, Basle MF, Chappard D. Effects of the length of crosslink chain on poly(2-hydroxyethyl methacrylate) (pHEMA) swelling and biomechanical properties. J Biomed Mater Res A. 2006;77:35–42.

    CAS  PubMed  Google Scholar 

  20. Sharma S, Nijdam AJ, Sinha PM, Walczak RJ, Liu X, Cheng MM-C, Ferrari M. Controlled-release microchips. Expert Opin Drug Deliv. 2006;3:379–94.

    Article  CAS  PubMed  Google Scholar 

  21. Wu P, Grainger DW. Drug/device combinations for local drug therapies and infection prophylaxis. Biomaterials. 2006;27:2450–67.

    Article  CAS  PubMed  Google Scholar 

  22. Merz E, Alfrey T, Goldfinger G. Intramolecular reactions in vinyl polymers as a means of investigation of the propagation step. J Polym Sci A. 1996;34:5–12.

    Article  CAS  Google Scholar 

  23. Babazadeh M. Synthesis, characterization, and in vitro drug-release properties of 2-hydroxyethyl methacrylate copolymers. J Appl Polym Sci. 2007;104:2403–9.

    Article  CAS  Google Scholar 

  24. Zecheru T, Filmon R, Rusen E, Marculescu B, Zerroukhi A, Cincu C, Chappard D. Biomimetic potential of some methacrylate-based copolymers: a comparative study. Biopolymers. 2009;91:966–73.

    Article  CAS  PubMed  Google Scholar 

  25. Mayo FR, Lewis FM. Copolymerization I. A basis for comparing the behavior of monomers in copolymerization; the copolymerization of styrene and methyl methacrylate. J Am Chem Soc. 1944;66:1594–601.

    Article  CAS  Google Scholar 

  26. Hagiopol C. Copolymerization: toward a systematic approach. New York: Kluwer-Academic/Plenum; 1999.

    Google Scholar 

  27. Berger M, Kuntz I. The distinction between terminal and penultimate copolymerization models. J Polym Sci A. 1964;2:1687–98.

    Google Scholar 

  28. Ito K, Uchida K, Kitano T, Yamada E, Matsumoto T. Solvent effects in radical copolymerization between hydrophilic and hydrophobic monomers; 2-hydroxyethyl methacrylate and lauryl methacrylate. Polym J. 1985;17:761–6.

    Article  CAS  Google Scholar 

  29. Denizli A, Garipcan B, Karabakan A, Senöz H. Synthesis and characterization of poly(hydroxyethyl methacrylate-N-methacryloyl-(l)-glutamic acid) copolymer beads for removal of lead ions. Mater Sci Eng C. 2005;25:448–54.

    Article  Google Scholar 

  30. Arifin DY, Lee LY, Wang C-H. Mathematical modeling and simulation of drug release from microspheres: implications to drug delivery systems. Adv Drug Deliv Rev. 2006;58:1274–325.

    Article  CAS  PubMed  Google Scholar 

  31. Serra L, Doménech J, Peppas NA. Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol) hydrogels. Biomaterials. 2006;27:5440–51.

    Article  CAS  PubMed  Google Scholar 

  32. Mackerle J. Finite-element analysis and simulation of polymers: a bibliography (1976–1996). Model Simul Mater Sci Eng. 1997;5:615–50.

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgments

Professor Georgios Staikos from University of Patras is gratefully acknowledged for his kind support with the elemental analysis. The project PN II IDEAS 729/2009 Polymer biomaterials for bone regeneration. Biomimetism through surface nanostructing is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izabela-Cristina Stancu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zecheru, T., Rotariu, T., Rusen, E. et al. Poly(2-hydroxyethyl methacrylate-co-dodecyl methacrylate-co-acrylic acid): synthesis, physico-chemical characterisation and nafcillin carrier. J Mater Sci: Mater Med 21, 2793–2804 (2010). https://doi.org/10.1007/s10856-010-4129-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4129-y

Keywords

Navigation