Skip to main content

Advertisement

Log in

Highly adherent bioactive glass thin films synthetized by magnetron sputtering at low temperature

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Thin (380–510 nm) films of a low silica content bioglass with MgO, B2O3, and CaF2 as additives were deposited at low-temperature (150°C) by radio-frequency magnetron sputtering onto titanium substrates. The influence of sputtering conditions on morphology, structure, composition, bonding strength and in vitro bioactivity of sputtered bioglass films was investigated. Excellent pull-out adherence (~73 MPa) was obtained when using a 0.3 Pa argon sputtering pressure (BG-a). The adherence declined (~46 MPa) upon increasing the working pressure to 0.4 Pa (BG-b) or when using a reactive gas mixture (~50 MPa). The SBF tests clearly demonstrated strong biomineralization features for all bioglass sputtered films. The biomineralization rate increased from BG-a to BG-b, and yet more for BG-c. A well-crystallized calcium hydrogen phosphate-like phase was observed after 3 and 15 days of immersion in SBF in all bioglass layers, which transformed monotonously into hydroxyapatite under prolonged SBF immersion. Alkali and alkali-earth salts (NaCl, KCl and CaCO3) were also found at the surface of samples soaked in SBF for 30 days. The study indicated that features such as composition, structure, adherence and bioactivity of bioglass films can be tailored simply by altering the magnetron sputtering working conditions, proving that this less explored technique is a promising alternative for preparing implant-type coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanism at the interface of ceramic prosthetic materials. J Biomed Mater Res Symp. 1971;2:117–41.

    Article  Google Scholar 

  2. Hench LL, Wilson J. Introduction to bioceramics. In: Hench LL, Wilson J, editors. Singapore: World Scientific Publishing Company; 1993.

  3. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials science. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, editors. An introduction to materials in medicine. New York: Academic Press; 2004.

  4. Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–91.

    Article  CAS  Google Scholar 

  5. Wilson J, Yli-Urpo A, Risto-Pekka H. Bioactive glasses: clinical applications. In: Hench LL, Wilson J, editors. An introduction to bioceramics. Singapore: World Scientific Publishing Company; 1993. p. 63–74.

    Google Scholar 

  6. Kasuga T, Sawada M, Nogami M, Abe Y. Bioactive ceramics prepared by sintering and crystallization of calcium phosphate invert glasses. Biomaterials. 1999;20:1415–20.

    Article  CAS  Google Scholar 

  7. Kokubo T. Surface chemistry of bioactive glass-ceramics. J Non Cryst Solids. 1990;120:138–51.

    Article  CAS  Google Scholar 

  8. Cao W, Hench LL. Bioactive materials. Ceramics Int. 1996;22:493–507.

    Article  CAS  Google Scholar 

  9. Kokubo T. A/W glass-ceramic: Processing and properties. In: Hench LL, Wilson J, editors. Introduction to bioceramics. Singapore: World Scientific Publishing Company; 1993. p. 75–88.

  10. Hench LL. Bioactive ceramics: theory and clinical applications. In: Andersson OH, Yli-Urpo A, editors. Bioceramics 7. Oxford: Butterworth-Heinemann Ltd.; 1994. p. 3–14.

  11. Hench LL, West JK. Biological applications of bioactive glasses. Life Chem Rep. 1996;13:187–241.

    CAS  Google Scholar 

  12. Saiz E, Goldman M, Gomez-Vega JM, Tomsia AP, Marshall GW, Marshall SJ. In vitro behavior of silicate glass coatings on Ti6Al4V. Biomaterials. 2002;23:3749–56.

    Article  CAS  Google Scholar 

  13. Izquierdo-Barba I, Conde F, Olmo N, Lizarbe MA, Garcia MA, Vallet-Regi M. Vitreous SiO2–CaO coatings on Ti6Al4V alloys: reactivity in simulated body fluid versus osteoblast cell culture. Acta Biomat. 2006;2:445–55.

    Article  CAS  Google Scholar 

  14. Lopez-Esteban S, Saiz E, Fujino S, Oku T, Suganuma K, Tomsia AP. Bioactive glass coatings for orthopedic metallic implants. J Eur Cer Soc. 2003;23:2921–30.

    Article  CAS  Google Scholar 

  15. Popescu AC, Sima F, Duta L, Popescu C, Mihailescu IN, Capitanu D, Mustata R, Sima LE, Petrescu SM, Janackovic D. Biocompatible and bioactive nanostructured glass coatings synthesized by pulsed laser deposition: In vitro biological tests. Appl Surf Sci. 2009;255:5486–90.

    Article  CAS  Google Scholar 

  16. Mardare CC, Mardare AI, Fernandes JRF, Joannia E, Pina SCA, Fernandes MHV, Correia RB. Deposition of bioactive glass-ceramic thin-films by RF magnetron sputtering. J Eur Ceram Soc. 2003;23:1027–30.

    Article  CAS  Google Scholar 

  17. Goller G. The effect of bond coat on mechanical properties of plasma sprayed bioglass-titanium coatings. Ceram Int. 2004;30:351–5.

    Article  CAS  Google Scholar 

  18. Wolke JGC, van den Beucken JJJP, Jansen JA. Growth behaviour of rat bone marrow cells on RF magnetron sputtered bioglass and calcium phosphate coatings. Key Eng Mater. 2008;361(/363):253–6.

    Article  Google Scholar 

  19. Saino E, Maliardi V, Quartarone E, Fassina L, Benedetti L, De Angelis MG, Mustarelli P, Facchini A, Visai L. In vitro enhancement of SAOS-2 cell calcified matrix deposition onto radio frequency magnetron sputtered bioglass-coated titanium scaffolds. Tissue Eng Part A. 2010;16:995–1008.

    Article  CAS  Google Scholar 

  20. Wasa K, Kitabatake M, Adachi H. Thin film materials technology: sputtering of compound materials. New York: Noyes Publications; 2003.

  21. Agathopoulos S, Tulyaganov DU, Ventura JMG, Kannan S, Karakassides MA, Ferreira JMF. Formation of hydroxyapatite onto glasses of the CaO–MgO–SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives. Biomaterials. 2006;27:1832–40.

    Article  CAS  Google Scholar 

  22. Stan GE, Pina S, Tulyaganov DU, Ferreira JMF, Pasuk I, Morosanu CO. Biomineralization capability of adherent bio-glass films prepared by magnetron sputtering. J Mater Sci Mater Med. 2010;21:1047–55.

    Article  CAS  Google Scholar 

  23. Swanepoel RJ. Determination of the thickness and optical constants of amorphous silicon. J Phys E. 1983;16:1214–22.

    Article  CAS  Google Scholar 

  24. Stan GE, Morosanu CO, Marcov DA, Pasuk I, Miculescu F, Reumont G. Effect of annealing upon the structure and adhesion properties of sputtered bio-glass/titanium coatings. Appl Surf Sci. 2009;255:9132–8.

    Article  CAS  Google Scholar 

  25. Mardare D, Luca D, Teodorescu CM, Macovei D. On the hydrophilicity of nitrogen-doped TiO2 thin films. Surf Sci. 2007;601:4515–20.

    Article  CAS  Google Scholar 

  26. Teodorescu CM, Esteva JM, Kainatak RC, El Afif A. An approximation of the Voigt I profile for the fitting of experimental X-ray absorption data. Nucl Instrum Methods Phys Res Sect A. 1994;345:141–7.

    Article  CAS  Google Scholar 

  27. Kokubo T, Kushitani H, Ohtsuki C, Sakka S, Yamamuro T. Effects of ions dissolved from bioactive glass-ceramic on the surface apatite formation. J Mater Sci Mater Med. 1993;4:1–4.

    Article  CAS  Google Scholar 

  28. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.

    Article  CAS  Google Scholar 

  29. Peddi L, Brow RK, Brown RF. Bioactive borate glass coatings for titanium alloys. J Mater Sci Mater Med. 2008;19:3145–52.

    Article  CAS  Google Scholar 

  30. Serra J, González P, Liste S, Chiussi S, León B, Pérez-Amor M, Ylänen HO, Hupa M. Influence of the non-bridging oxygen groups on the bioactivity of silicate glasses. J Mater Sci Mater Med. 2002;13:1221–5.

    Article  CAS  Google Scholar 

  31. Liste S, Serra J, González P, Borrajo JP, Chiussi S, León B, Pérez-Amor M. The role of the reactive atmosphere in pulsed laser deposition of bioactive glass films. Thin Solid Films. 2004;453–454:224–8.

    Article  Google Scholar 

  32. Goldman DS. Evaluation of the ratios of bridging to nonbridging oxygens in simple silicate glasses by electron spectroscopy for chemical analysis. Phys Chem Glasses. 1986;27:128–33.

    CAS  Google Scholar 

  33. Bunker BC, Tallant DR, Kirkpatrick RJ, Turner GL. Multinuclear magnetic resonance and Raman investigation of sodium borosilicate glass structures. Phys Chem Glasses. 1990;31:30–41.

    CAS  Google Scholar 

  34. Brow RK, Kirkpatrick RJ, Turner GL. The short range structure of sodium phosphate glasses I. MAS NMR studies. J Non Cryst Solids. 1990;116:39–45.

    Article  CAS  Google Scholar 

  35. Brinen JL, White MG. Postsynthesis modification of alum inophosphates by reaction with silicon tetrachloride. J Catal. 1990;124:133–47.

    Article  CAS  Google Scholar 

  36. Nanba T, Nishimura M, Miura Y. A theoretical interpretation of the chemical shift of 29Si NMR peaks in alkali borosilicate glasses. Geochim Cosmochim Acta. 2004;68:5103–11.

    Article  CAS  Google Scholar 

  37. Luca D, Teodorescu CM, Apetrei R, Macovei D, Mardare D. Preparation and characterization of increased-efficiency photocatalytic TiO2−2x N x thin films. Thin Solid Films. 2007;515:8605–10.

    Article  CAS  Google Scholar 

  38. Tuttle PV, Rundell AE, Webster TJ. Influence of biologically inspired nanometer surface roughness on antigen-antibody interactions for immunoassay-biosensor applications. Int J Nanomed. 2006;1:497–505.

    Article  CAS  Google Scholar 

  39. Price RL, Gutwein LG, Kaledin L, Tepper F, Webster TJ. Osteoblast function on nanophase alumina materials: influence of chemistry, phase, and topography. J Biomed Mater Res Part A. 2003;67:1284–93.

    Article  Google Scholar 

  40. Webster TJ, Siegel RW, Bizios R. Osteoblast adhesion on nanophase ceramics. Biomaterials. 1999;20:1221–7.

    Article  CAS  Google Scholar 

  41. Lopez-Esteban S, Gutierrez-Gonzalez CF, Gremillard L, Saiz E, Tomsia AP. Interfaces in graded coatings on titanium-based implants. J Biomed Mater Res Part A. 2009;88:1010–21.

    Article  CAS  Google Scholar 

  42. Balamurugan A, Balossier G, Kannan S, Michel J, Rebelo AHS, Ferreira JMF. Development and in vitro characterization of sol–gel derived CaO–P2O5–SiO2–ZnO bioglass. Acta Biomater. 2007;3:255–62.

    Article  CAS  Google Scholar 

  43. Ruban Kumar A, Kalainathan S. Growth and characterization of nano-crystalline hydroxyapatite at physiological conditions. Cryst Res Technol. 2008;43:640–4.

    Article  Google Scholar 

  44. Socrates G. Infrared and Raman characteristic group frequencies—tables and charts. Chichester: John Wiley & Sons Ltd; 2007.

    Google Scholar 

  45. Markovic M, Fowler BO, Tung MS. Preparation and comprehensive characterization of a calcium hydroxyapatite reference material. J Res Natl Inst Stand Technol. 2004;109:553–68.

    CAS  Google Scholar 

  46. Landi E, Celotti G, Logroscino G, Tampieri A. Carbonated hydroxyapatite as bone substitute. J Eur Ceram Soc. 2003;23:2931–7.

    Article  CAS  Google Scholar 

  47. Rey C, Collins B, Goehl T, Dickson IR, Glimcher MJ. The carbonate environment in bone mineral: a resolution enhanced fourier transform spectroscopy study. Calcif Tissue Int. 1989;45:157–64.

    Article  CAS  Google Scholar 

  48. Hong Z, Luan L, Paik SB, Deng B, Ellis DE, Ketterson JB, Mello A, Eon JG, Terra J, Rossi A. Crystalline hydroxyapatite thin films produced at room temperature—an opposing radio frequency magnetron sputtering approach. Thin Solid Films. 2007;515:6773–80.

    Article  CAS  Google Scholar 

  49. Palmero A, Rudolph H, Habraken FHPM. One-dimensional analysis of the rate of plasma-assisted sputter deposition. J Appl Phys. 2007;101:083307–083307-6.

    Google Scholar 

  50. van Hattum ED, Palmero A, Arnoldbik WM, Rudolph H, Habraken FHPM. On the ion and neutral atom bombardment of the growth surface in magnetron plasma sputter deposition. Appl Phys Lett. 2007;91:171501–171501-3.

    Google Scholar 

  51. Güttler D, Abendroth B, Grotzschel R, Moller W, Depla D. Mechanisms of target poisoning during magnetron sputtering as investigated by real-time in situ analysis and collisional computer simulation. Appl Phys Lett. 2004;85(25):6134–6.

    Article  Google Scholar 

  52. Berg S, Nyberg T. Fundamental understanding and modeling of reactive sputtering processes. Thin Solid Films. 2005;476(2):215–30.

    Article  CAS  Google Scholar 

  53. Ekpe SD, Dew SK. 3D numerical simulation of gas heating effects in a magnetron sputter deposition system. J Phys D. 2006;39:1413–21.

    Article  CAS  Google Scholar 

  54. Stan GE, Marcov DA, Pasuk I, Miculescu F, Pina S, Tulyaganov DU, Ferreira JMF. Bioactive glass thin films deposited by magnetron sputtering technique: the role of working pressure. Appl Surf Sci. 2010;256:7102–10.

    Article  CAS  Google Scholar 

  55. Alcock CB. Thermochemical processes—principles and models. Oxford: Butterworth-Heinemann; 2001. p. 384.

    Google Scholar 

  56. http://www.doitpoms.ac.uk/tlplib/ellingham_diagrams/ellingham.php.

  57. http://www.doitpoms.ac.uk/tlplib/ellingham_diagrams/interactive.php.

  58. Yang L, Hedhammar M, Blom T, Leifer K, Johansson J, Habibovic P, van Blitterswijk CA. Biomimetic calcium phosphate coatings on recombinant spider silk fibres. Biomed Mater. 2010;5:045002–12.

    Article  Google Scholar 

  59. Pasteris JD, Wopenk B, Freeman JJ, Rogers K, Valsami-Jones E, van der Houwen JAM, Silva MJ. Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. Biomaterials. 2004;25:229–38.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to CICECO for the support and to the Portuguese Foundation for Science and Technology for the fellowship grants of S. Pina (FRH/BPD/64119/2009) and A.F. Lemos (SFRH/BPD/27046/2006), and to Romanian Ministry of Education and Research for the financial support of Core Program—Contract PN09-45 and ID 76 scientific projects. Authors are grateful to Cristian-Mihail Teodorescu for the professional assistance with XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Stan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stan, G.E., Pasuk, I., Husanu, M.A. et al. Highly adherent bioactive glass thin films synthetized by magnetron sputtering at low temperature. J Mater Sci: Mater Med 22, 2693–2710 (2011). https://doi.org/10.1007/s10856-011-4441-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4441-1

Keywords

Navigation