Skip to main content
Log in

The impact of the RGD peptide on osteoblast adhesion and spreading on zinc-substituted hydroxyapatite surface

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The incorporation of zinc into the hydroxyapatite structure (ZnHA) has been proposed to stimulate osteoblast proliferation and differentiation. Another approach to improve cell adhesion and hydroxyapatite (HA) performance is coating HA with adhesive proteins or peptides such as RGD (arginine–glycine–aspartic acid). The present study investigated the adhesion of murine osteoblastic cells to non-sintered zinc-substituted HA disks before and after the adsorption of RGD. The incorporation of zinc into the HA structure simultaneously changed the topography of disk’s surface on the nanoscale and the disk’s surface chemistry. Fluorescence microscopy analyses using RGD conjugated to a fluorescein derivative demonstrated that ZnHA adsorbed higher amounts of RGD than non-substituted HA. Zinc incorporation into HA promoted cell adhesion and spreading, but no differences in the cell density, adhesion and spreading were detected when RGD was adsorbed onto ZnHA. The pre-treatment of disks with fetal bovine serum (FBS) greatly increased the cell density and cell surface area for all RGD-free groups, overcoming the positive contribution of zinc to cell adhesion. The presence of RGD on the ZnHA surface impaired the effects of FBS pre-treatment possibly due to competition between FBS proteins and RGD for surface binding sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Salgado PC, Oliveira AM, Oliveira RC, Calasans-Maia MD, Rodrigues CR, Coelho PG, et al. Bone remodeling, biomaterials and technological applications: revisiting basic concepts. J Biomater Nanobiotechnol. 2011;2(3):319–28.

    Article  Google Scholar 

  2. Zambuzzi WF, Coelho PG, Alves GG, Granjeiro JM. Intracellular signal transduction as a factor in the development of “smart” biomaterials for bone tissue engineering. Biotechnol Bioeng. 2011;108(6):1246–50.

    Article  CAS  Google Scholar 

  3. Matsumoto T, Okazaki M, Nakahira A, Sasaki J, Egusa H, Sohmura T. Modification of apatite materials for bone tissue engineering and drug delivery carriers. Curr Med Chem. 2007;14(25):2726–33.

    Article  CAS  Google Scholar 

  4. de Lima I, Alves GG, Soriano CA, Campaneli AP, Gasparoto TH, Ramos ES Jr, et al. Understanding the impact of divalent cation substitution on hydroxyapatite: an in vitro multiparametric study on biocompatibility. J Biomed Mater Res A. 2011;98(3):351–8.

    Google Scholar 

  5. Shepherd JH, Shepherd DV, Best SM. Substituted hydroxyapatites for bone repair. J Mater Sci Mater Med. 2012;23(10):2335–47.

    Article  CAS  Google Scholar 

  6. Patel N, Brooks RA, Clarke MT, Lee PM, Rushton N, Gibson IR, et al. In vivo assessment of hydroxyapatite and silicate-substituted hydroxyapatite granules using an ovine defect model. J Mater Sci Mater Med. 2005;16(5):429–40.

    Article  CAS  Google Scholar 

  7. Wu X, Itoh N, Taniguchi T, Nakanishi T, Tatsu Y, Yumoto N, et al. Zinc-induced sodium-dependent vitamin C transporter 2 expression: potent roles in osteoblast differentiation. Arch Biochem Biophys. 2003;420(1):114–20.

    Article  CAS  Google Scholar 

  8. Storrie H, Stupp SI. Cellular response to zinc-containing organoapatite: an in vitro study of proliferation, alkaline phosphatase activity and biomineralization. Biomaterials. 2005;26(27):5492–9.

    Article  CAS  Google Scholar 

  9. Yang F, Wen JD, He FM, DE XX, Zhao SF, Yang GL. Osteoblast response to porous titanium surfaces coated with zinc-substituted hydroxyapatite. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2012;113(3):313–18.

    Article  Google Scholar 

  10. de Lima I, Alves GG, Fernades GVO, Dias EP, Soares GA, Granjeiro JM. Evaluation of the in vivo biocompatibility of hydroxyapatite granules incorporated with zinc ions. Material Res. 2010;13(4):563–8.

    Google Scholar 

  11. Balasundaram G, Sato M, Webster TJ. Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD. Biomaterials. 2006;27(14):2798–805.

    Article  CAS  Google Scholar 

  12. Ribeiro N, Sousa SR, Monteiro FJ. Influence of crystallite size of nanophased hydroxyapatite on fibronectin and osteonectin adsorption and on MC3T3-E1 osteoblast adhesion and morphology. J Colloid Interf Sci. 2010;351(2):398–406.

    Article  CAS  Google Scholar 

  13. Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21(7):667–81.

    Article  CAS  Google Scholar 

  14. Yang C, Cheng K, Weng W, Yang C. Immobilization of RGD peptide on HA coating through a chemical bonding approach. J Mater Sci Mater Med. 2009;20(11):2349–52.

    Article  CAS  Google Scholar 

  15. He J, Huang T, Gan L, Zhou Z, Jiang B, Wu Y, et al. Collagen-infiltrated porous hydroxyapatite coating and its osteogenic properties: in vitro and in vivo study. J Biomed Mater Res A. 2012;100A(7):1706–15.

    Article  CAS  Google Scholar 

  16. Hennessy KM, Clem WC, Phipps MC, Sawyer AA, Shaikh FM, Bellis SL. The effect of RGD peptides on osseointegration of hydroxyapatite biomaterials. Biomaterials. 2008;29(21):3075–83.

    Article  CAS  Google Scholar 

  17. Sawyer AA, Hennessy KM, Bellis SL. The effect of adsorbed serum proteins, RGD and proteoglycan-binding peptides on the adhesion of mesenchymal stem cells to hydroxyapatite. Biomaterials. 2007;28(3):383–92.

    Article  CAS  Google Scholar 

  18. Sawyer AA, Hennessy KM, Bellis SL. Regulation of mesenchymal stem cell attachment and spreading on hydroxyapatite by RGD peptides and adsorbed serum proteins. Biomaterials. 2005;26(13):1467–75.

    Article  CAS  Google Scholar 

  19. Sun L, Berndt CC, Khor KA, Cheang HN, Gross KA. Surface characteristics and dissolution behavior of plasma-sprayed hydroxyapatite coating. J Biomed Mater Res. 2002;62(2):228–36.

    Article  CAS  Google Scholar 

  20. Ramesh ST, Rameshbabu N, Gandhimathi R, Nidheesh PV, Srikanth Kumar M. Kinetics and equilibrium studies for the removal of heavy metals in both single and binary systems using hydroxyapatite. Appl Water Sci. 2012;2:187–97.

    Article  CAS  Google Scholar 

  21. Sawyer AA, Weeks DM, Kelpke SS, McCracken MS, Bellis SL. The effect of the addition of a polyglutamate motif to RGD on peptide tethering to hydroxyapatite and the promotion of mesenchymal stem cell adhesion. Biomaterials. 2005;26(34):7046–56.

    Article  CAS  Google Scholar 

  22. Thompson P, Cox DE, Hastings JB. Rietveld Refinement of Debye-Scherrer Synchrotron X-ray data from Al2O3. J Appl Crystallogr. 1987;20:79–83.

    Article  CAS  Google Scholar 

  23. Venkatasubbu GD, Ramasamy S, Ramakrishnan V, Avadhani GS, Thangavel R, Kumar J. Investigations on zinc doped nanocrystalline hydroxyapatite. Int J Nanosci Nanotechnol. 2011;2(1):1–23.

    Google Scholar 

  24. Ren F, Xin R, Ge X, Leng Y. Characterization and structural analysis of zinc-substituted hydroxyapatites. Acta Biomater. 2009;5(8):3141–9.

    Article  CAS  Google Scholar 

  25. Cullity BD. Elements of X-ray diffraction. Pearson: Addison-Wesley Publishing Company; 1978.

    Google Scholar 

  26. Mavropoulos E, Costa AM, Costa LT, Achete CA, Mello A, Granjeiro JM, et al. Adsorption and bioactivity studies of albumin onto hydroxyapatite surface. Colloids Surf B Biointerf. 2011;83(1):1–9.

    Article  CAS  Google Scholar 

  27. Jackson M, Choo LP, Watson PH, Halliday WC, Mantsch HH. Beware of connective tissue proteins: assignment and implications of collagen absorptions in infrared spectra of human tissues. Biochim Biophys Acta. 1995;1270(1):1–6.

    Article  Google Scholar 

  28. Dong A, Prestrelski SJ, Allison SD, Carpenter JF. Infrared spectroscopic studies of lyophilization- and temperature-induced protein aggregation. J Pharm Sci. 1995;84(4):415–24.

    Article  CAS  Google Scholar 

  29. Mitri F, Alves G, Fernandes G, Konig B, Rossi AJ, Granjeiro J. Cytocompatibility of porous biphasic calcium phosphate granules with human mesenchymal cells by a multiparametric assay. Artif Organs 2012;36(6):535–42.

    Article  CAS  Google Scholar 

  30. Tsang EJ, Arakawa CK, Zuk PA, Wu BM. Osteoblast interactions within a biomimetic apatite microenvironment. Ann Biomed Eng. 2011;39(4):1186–200.

    Article  Google Scholar 

  31. Kumar GS, Girija EK, Thamizhavel A, Yokogawa Y, Kalkura SN. Synthesis and characterization of bioactive hydroxyapatite-calcite nanocomposite for biomedical applications. J Colloid Interf Sci. 2010;349(1):56–62.

    Article  CAS  Google Scholar 

  32. Malik MA, Puleo DA, Bizios R, Doremus RH. Osteoblasts on hydroxyapatite, alumina and bone surfaces in vitro: morphology during the first 2 h of attachment. Biomaterials. 1992;13(2):123–8.

    Article  CAS  Google Scholar 

  33. Lamers E, van Horrosen R, te Reit J, van Delft FC, Luttge R, Walboomers XF, et al. The influence of nanoscale topographical cues on initial osteoblast morphology and migration. Eur Cell Mater. 2010;20:329–43.

    CAS  Google Scholar 

  34. Okada S, Ito H, Nagai A, Komotori J, Imai H. Adhesion of osteoblast-like cells on nanostructured hydroxyapatite. Acta Biomater. 2010;6(2):591–7.

    Article  CAS  Google Scholar 

  35. Rouahi M, Champion E, Gallet O, Jada A, Anselme K. Physico-chemical characteristics and protein adsorption potential of hydroxyapatite particles: influence on in vitro biocompatibility of ceramics after sintering. Colloids Surf B Biointerf. 2006;47(1):10–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank CNPq, CAPES and FAPERJ for financial support. IME and LABNANO/CBPF for support with the SEM analysis; Jessica Dornelas, Suzana Anjos and Luciana Consentino for support with the in vitro tests and Priscila Lotsch for the mycoplasma verification assay. We also acknowledge the Brazilian Nanotechnology National Laboratory at Brazilian Center for Research in Energy and Materials for the electron microscopy facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Mavropoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mavropoulos, E., Hausen, M., Costa, A.M. et al. The impact of the RGD peptide on osteoblast adhesion and spreading on zinc-substituted hydroxyapatite surface. J Mater Sci: Mater Med 24, 1271–1283 (2013). https://doi.org/10.1007/s10856-013-4851-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4851-3

Keywords

Navigation