Skip to main content

Advertisement

Log in

Diamond as a scaffold for bone growth

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Diamond is an attractive material for biomedical implants. In this work, we investigate its capacity as a bone scaffold. It is well established that the bioactivity of a material can be evaluated by examining its capacity to form apatite-like calcium phosphate phases on its surface when exposed to simulated body fluid. Accordingly, polycrystalline diamond (PCD) and ultrananocrystalline diamond (UNCD) deposited by microwave plasma chemical vapour deposition were exposed to simulated body fluid and assessed for apatite growth when compared to the bulk silicon. Scanning electron microscopy and X-ray photoelectron spectroscopy showed that both UNCD and PCD are capable of acting as a bone scaffold. The composition of deposited apatite suggests that UNCD and PCD are suitable for in vivo implantation with UNCD possible favoured in applications where rapid osseointegration is essential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Baker K, Anderson M, Oehlke S, Astashkina A, Haikio D, Drelich J, et al. Growth, characterization and biocompatibility of bone-like calcium phosphate layers biomimetically deposited on metallic substratate. Mater Sci Eng, C. 2006;26(8):1351–60.

    Article  CAS  Google Scholar 

  2. Stigter M, Bezemer J, de Groot K, Layrolle P. Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy. J Controlled Release. 2004;99(1):127–37. doi:10.1016/j.jconrel.2004.06.011.

    Article  CAS  Google Scholar 

  3. Choi JM, Kim HE, Lee IS. Ion-beam-assisted deposition (IBAD) of hydroxyapatite coating layer on Ti-based metal substrate. Biomaterials. 2000;21(5):469–73.

    Article  CAS  Google Scholar 

  4. Knabe C, Berger G, Gildenhaar R, Klar F, Zreiqat H. The modulation of osteogenesis in vitro by calcium titanium phosphate coatings Biomaterials. 2004;25(20):4911–9.

    CAS  Google Scholar 

  5. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res. 1990;24(6):721–34.

    Article  CAS  Google Scholar 

  6. Coathup M, Blackburn J, Goodship A, Cunningham J, Smith T, Blunn G. Role of hydroxyapatite coating in resisting wear particle migration and osteolysis around acetabular components. Biomaterials. 2005;26(19):4161–9.

    Article  CAS  Google Scholar 

  7. Sun LM, Berndt CC, Gross KA, Kucuk A. Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: A review. J Biomed Mater Res. 2001;58(5):570–92. doi:10.1002/jbm.1056.

    Article  CAS  Google Scholar 

  8. Sun LM, Berndt CC, Khor KA, Cheang HN, Gross KA. Surface characteristics and dissolution behavior of plasma-sprayed hydroxyapatite coating. J Biomed Mater Res. 2002;62(2):228–36. doi:10.1002/jbm.10315.

    Article  CAS  Google Scholar 

  9. Cheang P, Khor KA. Addressing processing problems associated with plasma spraying of hydroxyapatite coatings. Biomaterials. 1996;17(5):537–44. doi:10.1016/0142-9612(96)82729-3.

    Article  CAS  Google Scholar 

  10. Ginebra MP, Traykova T, Planell JA. Calcium phosphate cements as bone drug delivery systems: A review. J Controlled Release. 2006;113(2):102–10. doi:10.1016/j.jconrel.2006.04.007.

    Article  CAS  Google Scholar 

  11. Tadic D, Epple M. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison with natural bone. Biomaterials. 2004;25(6):987–94.

    Article  CAS  Google Scholar 

  12. Venkatesan P, Puvvada N, Dash R, Kumar BNP, Sarkar D, Azab B, et al. The potential of celecoxib-loaded hydroxyapatite-chitosan nanocomposite for the treatment of colon cancer. Biomaterials. 2011;32(15):3794–806. doi:10.1016/j.biomaterials.2011.01.027.

    Article  CAS  Google Scholar 

  13. Uskoković V, Uskoković D. Nanosized hydroxyapatite and other calcium phosphates: Chemistry of formation and application as drug and gene delivery agents. J Biomed Mater Res B Appl Biomater. 2011;96B:152–91.

    Article  Google Scholar 

  14. Nath S, Basu B. Materials for orthopedic applications. In: Basu B, Katti D, Kumar A, editors. Advanced Biomaterials: Fundamentals, processing and applications. Hoboken: Wiley; 2009.

    Google Scholar 

  15. Klein C, Groot Kd. Implant systems based on bioactive ceramics. In: Heimke G, editor. Osseo-integrated implants: Implants in oral and ENT surgery. Boca Raton: CRC Press; 1990. p. 193–208.

  16. Yoshinari M, Klinge B, Derand T. The biocompatibility (cell culture and histologic study) of hydroxyl-apatite-coated implants created by ion beam dynamic mixing. Clin Oral Implant Res. 1996;7:96–100.

    Article  CAS  Google Scholar 

  17. Cook S, Thomas K, Brinker M. Bioactive ceramic coatings for orthopaedic and dental implant applications. Blood compatible materials and devices: Perspectives towards the 21st century. Lancaster: Technomic publishing company; 1991.

  18. Coathup MJ, Blunn GW, Flynn N, Williams C, Thomas NP. A comparison of bone remodelling around hydroxyapatite-coated, porous-coated and grit-blasted hip replacements retrieved at post-mortem. Journal of Bone and Joint Surgery-British Volume. 2001;83B(1):118–23. doi:10.1302/0301-620x.83b1.10062.

    Article  Google Scholar 

  19. Sousa SR, Barbosa MA. Effect of hydroxyapatite thickness on metal ion release from Ti6Al4 V substrates. Biomaterials. 1996;17(4):397–404. doi:10.1016/0142-9612(96)89655-4.

    Article  CAS  Google Scholar 

  20. Bohner M, Lemaitre J. Can bioactivity be tested in vitro with SBF solution Biomaterials. 2009;30:2175–9.

    CAS  Google Scholar 

  21. Combes C, Rey C. Adsorption of proteins and calcium phosphate materials bioactivity. Biomaterials. 2002;23:2817–23.

    Article  CAS  Google Scholar 

  22. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.

    Article  CAS  Google Scholar 

  23. Liu X, Fu RKY, Poon RWY, Chen P, Chu PK, Ding C. Biomimetic growth of apatite on hydrogen-implanted silicon. Biomaterials. 2004;25(25):5575–81. doi:10.1016/j.biomaterials.2004.01.015.

    Article  CAS  Google Scholar 

  24. Jaatinen J, Korhonen R, Pelttari A, Helminen H, Korhonen H, Lappalainen R, et al. Early bone growth on the surface of titanium implants in rat femur is enhanced by an amorphous diamond coating. Acta Orthop. 2011;82(4):499–503.

    Article  Google Scholar 

  25. Papo MJ, Catledge SA, Vohra YK. Mechanical wear behavior of nanocrystalline and multilayered diamond coatings on temporomandibular joint implants. J Mat Sci-Mat In Medicine. 2004;15:773.

    Article  CAS  Google Scholar 

  26. Fries M, Vohra Y. Nanostructured diamond film deposition on curved surfaces of metallic temporomandibular joint implant. J Phys D Appl Phys. 2002;35(20):L105–7.

    Article  CAS  Google Scholar 

  27. Guglielmotti MB, Renou S, Cabrini RL. A histomorphometric study of tissue interface by laminar implant test in rats. Int J Oral Maxillofac Implants. 1999;14(4):565–70.

    CAS  Google Scholar 

  28. Booth L, Catledge S, Nolen D, Thompson R, Vohra Y. Synthesis and characterization of multilayered diamond coatings for biomedical implants. Materials. 2011;4:857–68.

    Article  CAS  Google Scholar 

  29. Jozwik K, Karczemska A. The new generation Ti6Al4 V artificial heart valve with nanocrystalline diamond coating on the ring and with Derlin disc after long-term mechanical fatigue examination. Diam Relat Mater. 2007;16:1004.

    Article  CAS  Google Scholar 

  30. Aspenberg P, Anttila A, Konttinen YT, Lappalainen R, Goodman SB, Nordsletten L, et al. Benign response to particles of diamond and SiC: bone chamber studies of new joint replacement coating materials in rabbits. Biomaterials. 1996;17(8):807–12. doi:10.1016/0142-9612(96)81418-9.

    Article  CAS  Google Scholar 

  31. Mattei L, Di Puccio F, Piccigallo B, Ciulli E. Lubrication and wear modelling of artificial hip joints: A review. Tribol Int. 2011;44(5):532–49. doi:10.1016/j.triboint.2010.06.010.

    Article  Google Scholar 

  32. Saikko V, Ahlroos T, Calonius O, Keränen J. Wear simulation of total hip prostheses with polyethylene against CoCr, alumina and diamond-like carbon. Biomaterials. 2001;22(12):1507–14. doi:10.1016/s0142-9612(00)00306-9.

    Article  CAS  Google Scholar 

  33. Garrett DJ, Ganesan K, Stacey A, Fox K, Meffin H, Prawer S. Ultra-nanocrystalline diamond electrodes: Optimisation for neural Stimulation. J Neural Eng. 2012;9(1):10.

    Article  Google Scholar 

  34. Aharonovich I, Castelletto S. Simpson D A, Su C-H, Greentree A D, S P. Diamond-based single-photon emitters. Rep Prog Phys. 2011;74(7):076501.

    Article  Google Scholar 

  35. Popov C, Kulisch W, Jelinek M, Bock A, Strnad J. Nanocrystalline diamond/amorphous carbon composite films for applications in tribology, optics and biomedicine. Thin Solid Films. 2006;494(1–2):92–7. doi:10.1016/j.tsf.2005.07.163.

    Article  CAS  Google Scholar 

  36. Popov C, Kulisch W, Reithmaier JP, Dostalova T, Jelinek M, Anspach N, et al. Bioproperties of nanocrystalline diamond/amorphous carbon composite films. Diam Relat Mater. 2007;16(4–7):735–9. doi:10.1016/j.diamond.2006.12.001.

    Article  CAS  Google Scholar 

  37. Barrere F, van Blitterswijk CA, de Groot K, Layrolle P. Influence of ionic strength and carbonate on the Ca–P coating formation from SBF × 5 solution. Biomaterials. 2002;23(9):1921–30. doi:10.1016/s0142-9612(01)00318-0.

    Article  CAS  Google Scholar 

  38. Faig-Martia J, Gil-Murb FJ. Hydroxyapatite coatings in prosthetic joints. Rev Esp Cir Ortop Traumatol. 2008;52:113–20.

    Google Scholar 

  39. Kulisch W, Popov C, Gilliland D, Ceccone G, Reithmaier JP, Rossi F. UNCD/a-C nanocomposite films for biotechnological applications. Surf Coat Technol. 2011;206(4):667–75. doi:10.1016/j.surfcoat.2011.03.057.

    Article  CAS  Google Scholar 

  40. McLeod K, Kumar S, Dutta NK, Smart RS, Voelcker NH, Anderson GI. X-ray photoelectron spectroscopy study of the growth kinetics of biomimetically grown hydroxyapatite thin-film coatings. Appl Surf Sci. 2010;256(23):7178–85. doi:10.1016/j.apsusc.2010.05.047.

    Article  CAS  Google Scholar 

  41. Chosa N, Taira M, Saitoh S, Sato N, Araki Y. Characterization of apatite formed on alkaline-heat-treated Ti. J Dent Res. 2004;83(6):465–9.

    Article  CAS  Google Scholar 

  42. Ben-Nissan B, Chai CS, Gross KA. Effect of solution ageing on sol-gel hydroxyapatite coatings. Bioceramics, Vol 10. 1997.

  43. Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J Mater Res. 1998;13(1):94–117.

    Article  CAS  Google Scholar 

  44. Dorozhkin SV. Bioceramics of calcium orthophosphates. Biomaterials. 2010;31:1465–85.

    Article  CAS  Google Scholar 

  45. Kokubo T, Kim H-M, Kawashita M. Novel bioactive materials with different mechanical properties Biomaterials. 2003;24:2161–75.

    CAS  Google Scholar 

  46. Kokubo T, Ito S, Shigematsu M, Sakka S. JMS-. Fatigue and lifetime of bioactive glass-ceramic A-W containing apatite and wollastonite. J Mater Sci. 1987;22:4067–70.

    Article  CAS  Google Scholar 

  47. Lu X, Leng Y. Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials. 2005;26(10):1097–108. doi:10.1016/j.biomaterials.2004.05.034.

    Article  CAS  Google Scholar 

  48. Peng P, Kumar S, Voelcker NH, Szili E. St.C, Griesser H. Thin calcium phosphate coatings on titanium by electrochemical deposition in modified simulated body fluid. J Biomed Mater Res. 2006;76A(2):347–55.

    Article  CAS  Google Scholar 

  49. Tanahashi M, Matsuda T. Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid. J Biomed Mater Res. 1997;34(3):305–15.

    Article  CAS  Google Scholar 

  50. LeGeros RZ. Fundamentals of hydroxyapatite and related calcium phosphates. In: Basu B, Katti D, Kumar A, editors. Advanced Biomaterials: Fundamentals, processing and applications. Hoboken: Wiley; 2009.

    Google Scholar 

  51. Brown WE, Smith JP, Frazier AW, Lehr JR. Crystallographic and chemical relations between octacalcium phosphate and hydroxyapatite. Nature. 1962;196(4859):1050. doi:10.1038/1961050a0.

    Article  CAS  Google Scholar 

  52. Chou Y-F, Chiou W-A, Xu Y, Dunn JCY, Wu BM. The effect of pH on the structural evolution of accelerated biomimetic apatite. Biomaterials. 2004;25(22):5323–31. doi:10.1016/j.biomaterials.2003.12.037.

    Article  CAS  Google Scholar 

  53. Amin M, Randeniya L, Bendavid A, Martin P. E. P. Amorphous carbonated apatite formation on diamond-like carbon containing titanium oxide. Diam Relat Mater. 2009;18:1139–44.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A.D.G. acknowledges the Australian Research Council for financial support (Project No. DP0880466). This work was supported by the University of Melbourne Interdisciplinary Seed Funding scheme. K.F. is financially supported by the Australian Research Council (ARC) through its Special Research Initiative (SRI) in Bionic Vision Science and Technology grant to Bionic Vision Australia (BVA) and by the University of Melbourne Research Collaboration Grant scheme. K.F acknowledges the support of Surgical Design and Manufacture Ltd and Prof. Steven Prawer. The authors wish to acknowledge the facilities, and the scientific and technical assistance, of the Australian Microscopy & Microanalysis Research Facility at the RMIT Microscopy & Microanalysis Facility, at RMIT University and Dr Jiri Cervenka for FIB-SEM assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kate Fox.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, K., Palamara, J., Judge, R. et al. Diamond as a scaffold for bone growth. J Mater Sci: Mater Med 24, 849–861 (2013). https://doi.org/10.1007/s10856-013-4860-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4860-2

Keywords

Navigation