Skip to main content

Advertisement

Log in

Multi-layer haemocompatible diamond-like carbon coatings obtained by combined radio frequency plasma enhanced chemical vapor deposition and magnetron sputtering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract:

Radio-frequency Plasma Enhanced Chemical Vapour Deposition (in different methane dilutions) was used to synthesize adherent and haemocompatible diamond-like carbon (DLC) films on medical grade titanium substrates. The improvement of the adherence has been achieved by interposing a functional buffer layer with graded composition TixTiC1−x (x = 0–1) synthesized by magnetron co-sputtering. Bonding strength values of up to ~67 MPa have been measured by pull-out tests. Films with different sp3/sp2 ratio have been obtained by changing the methane concentration in the deposition chamber. Raman spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction were employed for the physical–chemical characterization of the samples. The highest concentration of sp3-C (~87 %), corresponding to a lower DLC surface energy (28.7 mJ/m2 ), was deposited in a pure methane atmosphere. The biological response of the DLC films was assayed by a state-of-the-art biological analysis method (surface enhanced laser desorption/ionization–time of flight mass spectroscopy), in conjunction with other dedicated testing techniques: Western blot and partial thromboplastin time. The data support a cause-effect relationship between sp3-C content, surface energy and coagulation time, as well as between platelet-surface adherence properties and protein adsorption profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Roy RK, Lee KR. Biomedical applications of diamond-like carbon coatings: a review. J Biomed Mater Res B. 2007;83:72–84. doi:10.1002/jbm.b.30768.

    Google Scholar 

  2. Logothetidis S. Haemocompatibility of carbon based thin films. Diamond Relat Mater. 2007;16:1847–57. doi:10.1016/j.diamond.2007.05.012.

    Article  CAS  Google Scholar 

  3. Ostrikov K, Cvelbar U, Murphy AB. Plasma nanoscience: setting directions, tackling grand challenges. J Phys D. 2011;44:174001. doi:10.1088/0022-3727/44/17/174001.

    Article  Google Scholar 

  4. Heimberg JA, Wahl KJ, Singer IL, Erdemir A. Superlow friction behavior of diamond-like carbon coatings: Time and speed effects. Appl Phys Lett. 2001;78:2449. doi:10.1063/1.1366649.

    Article  CAS  Google Scholar 

  5. Donnet C, Erdemir A. Tribology of diamond-like carbon films: Fundamentals and applications. Berlin: Springer; 2007.

    Google Scholar 

  6. Petersen M, Bandorf R, Brauer G, Klages CP. Diamond-like carbon films as piezoresistors in highly sensitive force sensors. Diamond Relat Mater. 2012;26:50–4. doi:10.1016/j.diamond.2012.04.004.

    Article  CAS  Google Scholar 

  7. Oliveira EC, Cruz SA, Aguiar PHL. Effect of PECVD deposition parameters on the DLC/PLC composition of a-C:H thin films. J Brazil Chem Soc. 2012;23:1657–62.

    Article  CAS  Google Scholar 

  8. Vaghri E, Khalaj Z, Ghoranneviss M, Borghei M. Characterization of diamond-like carbon films synthesized by DC-plasma enhanced chemical vapor deposition. J Fusion Energy. 2011;30:447–52. doi:10.1007/s10894-011-9406-3.

    Article  CAS  Google Scholar 

  9. Myllymaa S, Kaivosoja E, Myllymaa K, Sillat T, Korhonen H, Lappalainen R, Konttinen YT. Adhesion, spreading and osteogenic differentiation of mesenchymal stem cells cultured on micropatterned amorphous diamond, titanium, tantalum and chromium coatings on silicon. J Mater Sci–Mater Med. 2010;21:329–41. doi:10.1007/s10856-009-3836-8.

    Article  CAS  Google Scholar 

  10. Soininen A, Levon J, Katsikogianni M, Myllymaa K, Lappalainen R, Konttinen YT, Kinnari TJ, Tiainen VM, Missirlis Y. In vitro adhesion of staphylococci to diamond-like carbon polymer hybrids under dynamic flow conditions. J Mater Sci–Mater Med. 2011;22:629–36. doi:10.1007/s10856-011-4231-9.

    Article  CAS  Google Scholar 

  11. Flege S, Hatada R, Ensinger W, Baba K. Properties of hydrogenated DLC films as prepared by a combined method of plasma source ion implantation and unbalanced magnetron sputtering. J Mater Res. 2012;27:845–9. doi:10.1557/jmr.2011.341.

    Article  CAS  Google Scholar 

  12. Srinivasan S, Tang Y, Li YS, Yang Q, Hirose A. Ion beam deposition of DLC and nitrogen doped DLC thin films for enhanced haemocompatibility on PTFE. Appl Surf Sci. 2012;258:8094–9. doi:10.1016/j.apsusc.2012.04.178.

    Article  CAS  Google Scholar 

  13. Jelínek M, Smetana K, Kocourek T, Dvǒránkovác B, Zemek J, Remsa J, Luxbacher T. Biocompatibility and sp3/sp2 ratio of laser created DLC films. Mater Sci Eng, B. 2010;169:89–93. doi:10.1016/j.mseb.2010.01.010.

    Article  Google Scholar 

  14. Písǎrík P, Jelínek M, Smetana K Jr, Dvǒránková B, Kocourek T, Zemek J, Chvostová D. Study of optical properties and biocompatibility of DLC films characterized by sp3 bonds. Appl Phys A. 2013;112:143–8. doi:10.1007/s00339-012-7216-8.

    Article  Google Scholar 

  15. Nelea V, Jelínek M, Mihailescu. Chapter 18: Biomaterials: new issues and breakthroughs for biomedical applications. In: Eason R, editor. Pulsed laser deposition of thin films: applications-lead growth of functional materials. New York: Wiley; 2007. p. 421–59.

    Google Scholar 

  16. Morshed MM, Cameron DC, McNamara BP, Hashmi MSJ. Pre-treatment of substrates for improved adhesion of diamond-like carbon films on surgically implantable metals deposited by saddle field neutral beam source. Surf Coat Technol. 2003;174–175:579–83. doi:10.1016/S0257-8972(03)00701-1.

    Article  Google Scholar 

  17. Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng, R. 2004;47:49–121. doi:10.1016/j.mser.2004.11.001.

    Article  Google Scholar 

  18. Jones MI, McColl IR, Grant DM, Parker KG, Parker TL. Haemocompatibility of DLC and TiC–TiN interlayers on titanium. Diamond Relat Mater. 1999;8:457–62. doi:10.1016/S0925-9635(98)00426-9.

    Article  CAS  Google Scholar 

  19. Wei Q, Sankar J, Narayan J. Structure and properties of novel functional diamond-like carbon coatings produced by laser ablation. Surf Coat Technol. 2001;146–147:250–7. doi:10.1016/S0257-8972(01)01394-9.

    Article  Google Scholar 

  20. Voevodin AA, Zabinski JS. Superhard, functionally gradient, nanolayered and nanocomposite diamond-like carbon coatings for wear protection. Diamond Relat Mater. 1998;7:463–7. doi:10.1016/S0925-9635(97)00214-8.

    Article  CAS  Google Scholar 

  21. Zheng YF, Liu D, Liu XL, Li L. Ti-TiC-TiC/DLC gradient nano-composite film on a biomedical NiTi alloy. Biomed Mater. 2008;3:044103. doi:10.1088/1748-6041/3/4/044103.

    Article  Google Scholar 

  22. Ong SE, Zhang S. Chapter 2: Amorphous carbon coatings in biological applications. In: Zhang S, editor. Biological and biomedical coatings Handbook. Volume 2: Applications. Boca Raton: CRC Press; 2012. p. 45–111.

    Google Scholar 

  23. Fedel M, Motta A, Maniglio D, Migliaresi C. Surface properties and blood compatibility of commercially available diamond-like carbon coatings for cardiovascular devices. J Biomed Mater Res B. 2009;90:338–49. doi:10.1002/jbm.b.31291.

    Google Scholar 

  24. Kocourek T, Jelínek M, Vorlíček V, Zemek J, Janča T, Žížková V, Podlaha J, Popov C. DLC coating of textile blood vessels using PLD. Appl Phys A. 2008;93:627–32. doi:10.1007/s00339-008-4728-3.

    Article  CAS  Google Scholar 

  25. Leng YX, Chen JY, Yang P, Sun H, Wan GJ, Huang N. Mechanical properties and platelet adhesion behavior of diamond-like carbon films synthesized by pulsed vacuum arc plasma deposition. Surf Sci. 2003;531:177–84. doi:10.1016/S0039-6028(03)00487-4.

    Article  CAS  Google Scholar 

  26. Chen JY, Wang LP, Fu KY, Huang N, Leng Y, Leng YX, Yang P, Wang J, Wan GJ, Sun H, Tian XB, Chu PK. Blood compatibility and sp3/sp2 contents of diamond-like carbon (DLC) synthesized by plasma immersion ion implantation-deposition. Surf Coat Technol. 2002;156:289–94. doi:10.1016/S0257-8972(02)00089-0.

    Article  CAS  Google Scholar 

  27. Kwok SCH, Wang J, Chu PK. Surface energy, wettability, and blood compatibility phosphorus doped diamond-like carbon films. Diamond Relat Mater. 2005;14:78–85. doi:10.1016/j.diamond.2004.07.019.

    Article  CAS  Google Scholar 

  28. Ma WJ, Ruys AJ, Mason RS, Martin PH, Bendavid A, Liu ZW, Ionescu M, Zreiqat H. DLC coatings: effects of physical and chemical properties on biological response. Biomaterials. 2007;28:1620–8. doi:10.1016/j.biomaterials.2006.12.010.

    Article  CAS  Google Scholar 

  29. Hasebe T, Shimada A, Suzuki T, Matsuoka Y, Saito T, Yohena S, Kamijo A, Shiraga N, Higuchi M, Kimura K, Yoshimura H, Kuribayashi S. Fluorinated diamond-like carbon as antithrombogenic coating for blood-contacting devices. J Biomed Mater Res A. 2006;76A:86–94. doi:10.1002/jbm.a.30512.

    Article  CAS  Google Scholar 

  30. Hasebe T, Yohena S, Kamijo A, Okazaki Y, Hotta A, Takahashi K, Suzuki T. Fluorine doping into diamond-like carbon coatings inhibits protein adsorption and platelet activation. J Biomed Mater Res A. 2007;83A:1192–9. doi:10.1002/jbm.a.31340.

    Article  CAS  Google Scholar 

  31. Saito T, Hasebe T, Yohena S, Matsuoka Y, Kamijo A, Takahashi K, Suzuki T. Anti-thrombogenicity of fluorinated diamond-like carbon films. Diamond Relat Mater. 2005;14:1116–9. doi:10.1016/j.diamond.2004.09.017.

    Article  CAS  Google Scholar 

  32. Jones MI, McColl IR, Grant DM, Parker KG, Parker TL. Protein adsorption and platelet attachment and activation on TiN, TiC and DLC coatings on titanium for cardiovascular applications. J Biomed Mater Res. 2000;532:413–21. doi:10.1002/1097-4636(200011)52:2<413:AID-JBM23>3.0.CO;2-U.

    Article  Google Scholar 

  33. Okpalugo TIT, Ogwu AA, Maguire PD, McLaughlin JAD. Platelet adhesion on silicon modified hydrogenated amorphous carbon films. Biomaterials. 2004;25:239–45. doi:10.1016/S0142-9612(03)00494-0.

    Article  CAS  Google Scholar 

  34. Sima LE, Stan GE, Morosanu CO, Melinescu A, Ianculescu A, Melinte R, Neamtu J, Petrescu SM. Differentiation of mesenchymal stem cells onto highly adherent radio frequency-sputtered carbonated hydroxylapatite thin films. J Biomed Mater Res A. 2010;95A:1203–14. doi:10.1002/jbm.a.32947.

    Article  CAS  Google Scholar 

  35. Stan GE, Popescu AC, Mihailescu IN, Marcov DA, Mustata RC, Sima LE, Petrescu SM, Ianculescu A, Trusca R, Morosanu CO. On the bioactivity of adherent bioglass thin films synthesized by magnetron sputtering techniques. Thin Solid Films. 2010;518:5955–64. doi:10.1016/j.tsf.2010.05.104.

    Article  CAS  Google Scholar 

  36. Owens DK, Wendt RC. Estimation of the surface free energy of polymers. J Appl Polym Sci. 1969;13:1741–7. doi:10.1002/app.1969.070130815.

    Article  CAS  Google Scholar 

  37. Roy RK, Choi HW, Yi JW, Moon MW, Lee KR, Han DK, Shin JH, Kamijo A, Hasebe T. Hemocompatibility of surface-modified, silicon-incorporated, diamond-like carbon films. Acta Biomater. 2009;5:249–56. doi:10.1016/j.actbio.2008.07.031.

    Article  CAS  Google Scholar 

  38. Margolis J. The kaolin clotting time: a rapid one-stage method for diagnosis of coagulation defects. J Clin Pathol. 1958;11:406–9.

    Article  CAS  Google Scholar 

  39. McGlasson DL, Brey RL, Strickland DM, Patterson WR. Differences in kaolin-clotting times and platelet counts resulting from variations in specimen processing. Clin Lab Sci. 1989;2:109–10.

    Google Scholar 

  40. Ferrari AC. Determination of bonding in diamond-like carbon by Raman spectroscopy. Diamond Relat Mater. 2002;11:1053–61. doi:10.1016/S0925-9635(01)00730-0.

    Article  CAS  Google Scholar 

  41. Ferrari AC. Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007;143:47–57. doi:10.1016/j.ssc.2007.03.052.

    Article  CAS  Google Scholar 

  42. Morshed MM, Cameron DC, McNamara BP, Hashmi MSJ. Pre-treatment of substrates for improved adhesion of diamond-like carbon films on surgically implantable metals deposited by saddle field neutral beam source. Surf Coat Technol. 2003;174–175:579–83. doi:10.1016/S0257-8972(03)00701-1.

    Article  Google Scholar 

  43. De Barros MI, Vandenbulcke L. Plasma-assisted chemical vapor deposition process for depositing smooth diamond coatings on titanium alloys at moderate temperature. Diamond Relat Mater. 2000;9:1862–6. doi:10.1016/S0925-9635(00)00335-6.

    Article  Google Scholar 

  44. Morshed MM, McNamara BP, Cameron DC, Hashmi MSJ. Stress and adhesion in DLC coatings on 316L stainless steel deposited by a neutral beam source. J Mater Process Technol. 2003;143–144:922–6. doi:10.1016/S0924-0136(03)00246-2.

    Article  Google Scholar 

  45. Schwan J, Ulrich S, Batori V, Ehrhardt H, Silva SRP. Raman spectroscopy on amorphous carbon films. J Appl Phys. 1996;80:440–7. doi:10.1063/1.362745.

    Article  CAS  Google Scholar 

  46. Zhang S, Zeng XT, Xie H, Hing P. A phenomenological approach for the Id/Ig ratio and sp3 fraction of magnetron sputtered a-C films. Surf Coat Technol. 2000;123:256–60. doi:10.1016/S0257-8972(99)00523-X.

    Article  CAS  Google Scholar 

  47. Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B. 2000;61:14095–107. doi:10.1103/PhysRevB.61.14095.

    Article  CAS  Google Scholar 

  48. Beghi MG, Ferrari AC, Botani CE, Libassi A, Tanner BK, Teo KBK, Robertson J. Elastic constants and structural properties of nanometre-thick diamond-like carbon films. Diamond Relat Mater. 2002;11:1062–7. doi:10.1016/S0925-9635(01)00642-2.

    Article  CAS  Google Scholar 

  49. Ahmad I, Roy SS, Rahman MA, Okpalugo TIT, Maguire PD, McLaughlin JA. Substrate effects on the microstructure of hydrogenated amorphous carbon films. Curr Appl Phys. 2009;9:937–42. doi:10.1016/j.cap.2008.09.006.

    Article  Google Scholar 

  50. Shin JK, Lee CS, Lee KR, Eun KY. Effect of residual stress on the Raman-spectrum analysis of tetrahedral amorphous carbon films. Appl Phys Lett. 2001;78:631. doi:10.1063/1.1343840.

    Article  CAS  Google Scholar 

  51. Mardare D, Luca D, Teodorescu CM, Macovei D. On the hydrophilicity of nitrogen-doped TiO2 thin films. Surf Sci. 2007;601:4515–20. doi:10.1016/j.susc.2007.04.156.

    Article  CAS  Google Scholar 

  52. Yan XB, Xu T, Yang SR, Liu HW, Xue QJ. Characterization of hydrogenated diamond-like carbon films electrochemically deposited on a silicon substrate. J Phys D. 2004;37:2416–24. doi:10.1088/0022-3727/37/17/012.

    Article  CAS  Google Scholar 

  53. Okpalugo TIT, Papakonstantinou P, Murphy H, McLaughlin J, Brown NMD. High resolution XPS characterization of chemical functionalized MWCNTs and SWCNTs. Carbon. 2005;43:153–61. doi:10.1016/j.carbon.2004.08.033.

    Article  CAS  Google Scholar 

  54. Liao JX, Liu WM, Xu T, Xue QJ. Characteristics of carbon films prepared by plasma-based ion implantation. Carbon. 2004;42:387–93. doi:10.1016/j.carbon.2003.11.013.

    Article  CAS  Google Scholar 

  55. Shterenberg LE, Bogdanova SV. Effect of nickel on the graphitization of carbon materials at high pressures and temperatures. Inorg Mater. 1979;15:632–6.

    Google Scholar 

  56. Rats D, Vandenbulcke L, Herbin R, Benoit R, Erre R, Serin V, Sevely J. Characterization of diamond films deposited on titanium and its alloys. Thin Solid Films. 1995;270:177–83. doi:10.1016/0040-6090(95),06913-5.

    Article  CAS  Google Scholar 

  57. Park SS, Lee JY. Synthesis of diamond films on titanium substrates by hot-filament chemical vapor deposition. J Appl Phys. 1991;69:2618. doi:10.1063/1.348653.

    Article  CAS  Google Scholar 

  58. Ianno NJ, Dillon RO, Ali A, Ahmad A. Deposition of diamond-like carbon on a titanium biomedical alloy. Thin Solid Films. 1995;270:275–8. doi:10.1016/0040-6090(95),06710-8.

    Article  CAS  Google Scholar 

  59. Baek SH, Mihec DF, Metson JB. The deposition of diamond films by combustion assisted CVD on Ti and Ti-6Al-4V. Chem Vap Deposition. 2002;8:29–34. doi:10.1002/1521-3862(20020116)8:1<29:AID-CVDE29>3.0.CO;2-Q.

    Article  CAS  Google Scholar 

  60. Bugaev SP, Korotaev AD, Oskomov KV, Sochugov NS. Properties of diamond-like films obtained in a barrier discharge at atmospheric pressure. Tech Phys. 1997;42:945–9. doi:10.1134/1.1258759.

    Article  Google Scholar 

  61. Riccardi C, Barni R, Fontanesi M, Tosi P. Gaseous precursors of diamond-like carbon films in CH4/Ar plasmas. Chem Phys Lett. 2000;329:66–70. doi:10.1016/S0009-2614(00)00949-0.

    Article  CAS  Google Scholar 

  62. Valentini L, Kenny JM, Mariotto G, Tosi P. Deposition of hydrogenated amorphous carbon films from CH4/Ar plasmas: Ar dilution effects. J Mater Sci. 2001;36:5295–300. doi:10.1023/A:1012422618327.

    Article  CAS  Google Scholar 

  63. Urbani A, Sirolli V, Lupisella S, Levi-Mortera S, Pavone B, Pieroni L, Amoroso L, Di Vito R, Bucci S, Bernardini S, Sacchetta P, Bonomini M. Proteomic investigations on the effect of different membrane materials on blood protein adsorption during haemodialysis. Blood Transfus. 2012;10:s101–12. doi:10.2450/2012.014S.

    Google Scholar 

  64. Yang P, Kwok SCH, Chu PK, Leng YX, Chen JY, Wang J, Huang N. Haemocompatibility of hydrogenated amorphous carbon (a-C:H) films synthesized by plasma immersion ion implantation-deposition. Nucl Instrum Methods Phys Res Sect B. 2003;206:721–5. doi:10.1016/S0168-583X(03)00871-1.

    Article  CAS  Google Scholar 

  65. Krishnan LK, Varghese N, Muraleedharan CV, Bhuvaneshwar GS, Derangère F, Sampeur Y, Suryanarayanan R. Quantitation of platelet adhesion to Ti and DLC-coated Ti in vitro using 125-I-labeled platelets. Biomol Eng. 2002;19:251–3. doi:10.1016/S1389-0344(02)00029-1.

    Article  CAS  Google Scholar 

  66. Hauert R. A review of modified DLC coatings for biological applications. Diamond Relat Mater. 2003;12:583–9. doi:10.1016/S0925-9635(03)00081-5.

    Article  CAS  Google Scholar 

  67. Liu Y, Li Z, He Z, Chen D, Pan S. Structure and blood compatibility of tetrahedral amorphous hydrogenated carbon formed by a magnetic-field-filter plasma stream. Surf Coat Technol. 2007;201:6851–6. doi:10.1016/j.surfcoat.2006.09.021.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Romanian National Authority for Scientific Research through the PNII-RU-TE-2011-3-0164 (TE 49/2011). A.C. Popescu is grateful for the financial support of PNII-RU-TE-2012-3-0379 (TE 16/2013). The authors thank Eng. D.A. Marcov for helping with the coatings’ preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Stan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popa, A.C., Stan, G.E., Husanu, M.A. et al. Multi-layer haemocompatible diamond-like carbon coatings obtained by combined radio frequency plasma enhanced chemical vapor deposition and magnetron sputtering. J Mater Sci: Mater Med 24, 2695–2707 (2013). https://doi.org/10.1007/s10856-013-5026-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-5026-y

Keywords

Navigation