Skip to main content

Advertisement

Log in

A comparative study of zirconium and titanium implants in rat: osseointegration and bone material quality

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Permanent metal implants are widely used in human medical treatments and orthopedics, for example as hip joint replacements. They are commonly made of titanium alloys and beyond the optimization of this established material, it is also essential to explore alternative implant materials in view of improved osseointegration. The aim of our study was to characterize the implant performance of zirconium in comparison to titanium implants. Zirconium implants have been characterized in a previous study concerning material properties and surface characteristics in vitro, such as oxide layer thickness and surface roughness. In the present study, we compare bone material quality around zirconium and titanium implants in terms of osseointegration and therefore characterized bone material properties in a rat model using a multi-method approach. We used light and electron microscopy, micro Raman spectroscopy, micro X-ray fluorescence and X-ray scattering techniques to investigate the osseointegration in terms of compositional and structural properties of the newly formed bone. Regarding the mineralization level, the mineral composition, and the alignment and order of the mineral particles, our results show that the maturity of the newly formed bone after 8 weeks of implantation is already very high. In conclusion, the bone material quality obtained for zirconium implants is at least as good as for titanium. It seems that the zirconium implants can be a good candidate for using as permanent metal prosthesis for orthopedic treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Navarro M, Michiardi A, Castaño O, Planell JA. Biomaterials in orthopaedics. J R Soc Interface. 2008;5(27):1137–58. doi:10.1098/rsif 2008.0151.

    Article  Google Scholar 

  2. Messaddeq SH, Pulcinelli SH, Santilli CV, Guastaldi AC, Messaddeq Y. Microstructure and corrosion resistance of inorganic-organic (ZrO2-PMMA) hybrid coating on stainless steel. J Non-Cryst Solids. 1999;247:164–70. doi:10.1016/S0022-3093(99)00058-7.

    Article  Google Scholar 

  3. Neumann HG, Beck U, Drawe M, Steinbach J. Multilayer systems for corrosion protection of stainless steel implants. Surf Coat Tech. 1998;98(1–3):1157–61. doi:10.1016/S0257-8972(97)00236-3.

    Article  Google Scholar 

  4. Chou TP, Chandrasekaran C, Limmer SJ, Seraji S, Wu Y, Forbess MJ, et al. Organic–inorganic hybrid coatings for corrosion protection. J Non-Cryst Solids. 2001;290(2–3):153–62. doi:10.1016/S0022-3093(01)00818-3.

    Article  Google Scholar 

  5. Fathi MH, Moosavi S, Mortazavi V. Novel materials for endodontic implant, in vitro and in vivo tests. Dent Res J. 2003;1(1):36–46.

    Google Scholar 

  6. Mehdikhani-Nahrkhalaji M, Fathi MH, Mortazavi V, Mousavi SB, Hashemi-Beni B, Razavi SM. Novel nanocomposite coating for dental implant applications in vitro and in vivo evaluation. J Mater Sci Mater Med. 2012;23(2):485–95.

    Article  Google Scholar 

  7. Krupa D, Baszkiewicz J, Sobczak JW, Biliński A, Barcz A. Modifying the properties of titanium surface with the aim of improving its bioactivity and corrosion resistance. J Mater Process Tech. 2003;143:158–63. doi:10.1016/S0924-0136(03)00398-4.

    Article  Google Scholar 

  8. Rodríguez HH, Vargas G, Cortés DA. Electrophoretic deposition of bioactive wollastonite and porcelain-wollastonite coatings on 316L stainless steel. Ceram Int. 2008;34(5):1303–7. doi:10.1016/j.ceramint.2007.03.002.

    Article  Google Scholar 

  9. Yang BC, Uchida M, Kim HM, Zhang XD, Kokubo T. Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials. 2004;25(6):1003–10. doi:10.1016/S0142-9612(03)00626-4.

    Article  Google Scholar 

  10. Cabrini RL, Guglielmotti MB, Almagro JC. Histomorphometry of initial bone healing around zirconium implants in rats. Implant Dent. 1993;2(4):264–7.

    Article  Google Scholar 

  11. Saldaña L, Méndez-Vilas A, Jiang L, Multigner M, González-Carrasco JL, Pérez-Prado MT, et al. In vitro biocompatibility of an ultrafine grained zirconium. Biomaterials. 2007;28(30):4343–54. doi:10.1016/j.biomaterials.2007.06.015.

    Article  Google Scholar 

  12. Wang K. The use of titanium for medical applications in the USA. Mat Sci Eng A. 1996;213(1–2):134–7. doi:10.1016/0921-5093(96)10243-4.

    Article  Google Scholar 

  13. Scarano A, Piattelli M, Caputi S, Favero GA, Piattelli A. Bacterial adhesion on commercially pure titanium and zirconium oxide disks: an in vivo human study. J Periodontol. 2004;75(2):292–6. doi:10.1902/jop.2004.75.2.292.

    Article  Google Scholar 

  14. Gomez Sanchez A, Schreiner W, Duffó G, Ceré S. Surface modification of titanium by anodic oxidation in phosphoric acid at low potentials. Part 1. Structure, electronic properties and thickness of the anodic films. Surf Interface Anal. 2013;45(6):1037–46. doi:10.1002/sia.5210.

    Article  Google Scholar 

  15. Gomez Sanchez A, Ballarre J, Orellano JC, Duffó G, Ceré S. Surface modification of zirconium by anodisation as material for permanent implants: in vitro and in vivo study. J Mater Sci. 2012;. doi:10.1007/s10856-012-4770-8.

    Google Scholar 

  16. Gomez Sanchez A, Schreiner W, Duffó G, Ceré S. Surface characterization of anodized zirconium for biomedical applications. Appl Surf Sci. 2011;257(15):6397–405. doi:10.1016/j.apsusc.2011.02.005.

    Article  Google Scholar 

  17. Ballarre J, Seltzer R, Mendoza E, Orellano JC, Mai YW, Garcia C, et al. Morphologic and nanomechanical characterization of bone tissue growth around bioactive sol-gel coatings containing wollastonite particles applied on stainless steel implants. Mat Sci Eng C. 2011;31(3):545–52. doi:10.1016/j.msec.2010.11.030.

    Article  Google Scholar 

  18. Sul YT, Johansson CB, Jeong Y, Albrektsson T. The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Med Eng Phys. 2001;23(5):329–46. doi:10.1016/S1350-4533(01)00050-9.

    Article  Google Scholar 

  19. Ballarre J, Manjubala I, Schreiner WH, Orellano JC, Fratzl P, Cere S. Improving the osteointegration and bone-implant interface by incorporation of bioactive particles in sol-gel coatings of stainless steel implants. Acta Biomater. 2010;6(4):1601–9. doi:10.1016/j.actbio.2009.10.015.

    Article  Google Scholar 

  20. Perez CA, Radtke M, Sanchez HJ, Tolentino H, Neuenshwander RT, Barg W, et al. Synchrotron radiation X-ray fluorescence at the LNLS: beamline instrumentation and experiments. X-Ray Spectrom. 1999;28(5):320–6. doi:10.1002/(SICI)1097-4539(199909/10)28:5<320:AID-XRS359>3.0.CO;2-1.

    Article  Google Scholar 

  21. Sole VA, Papillon E, Cotte M, Walter P, Susini J. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim Acta B. 2007;62(1):63–8. doi:10.1016/j.sab.2006.12.002.

    Article  Google Scholar 

  22. Rinnerthaler S, Roschger P, Jakob HF, Nader A, Klaushofer K, Fratzl P. Scanning small angle X-ray scattering analysis of human bone sections. Calcif Tissue Int. 1999;64(5):422–9. doi:10.1007/Pl00005824.

    Article  Google Scholar 

  23. Roschger P, Gupta HS, Berzanovich A, Ittner G, Dempster DW, Fratzl P, et al. Constant mineralization density distribution in cancellous human bone. Bone. 2003;32(3):316–23. doi:10.1016/S8756-3282(02)00973-0.

    Article  Google Scholar 

  24. Gamsjaeger S, Masic A, Roschger P, Kazanci M, Dunlop JWC, Klaushofer K, et al. Cortical bone composition and orientation as a function of animal and tissue age in mice by Raman spectroscopy. Bone. 2010;47(2):392–9. doi:10.1016/j.bone.2010.04.608.

    Article  Google Scholar 

  25. Yerramshetty JS, Akkus O. The associations between mineral crystallinity and the mechanical properties of human cortical bone. Bone. 2008;42(3):476–82. doi:10.1016/j.bon.2007.12.001.

    Article  Google Scholar 

  26. Penel G, Leroy G, Rey C, Bres E. MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int. 1998;63(6):475–81. doi:10.1007/s002239900561.

    Article  Google Scholar 

  27. Donnelly E, Boskey AL, Baker SP, van der Meulen MCH. Effects of tissue age on bone tissue material composition and nanomechanical properties in the rat cortex. J Biomed Mater Res A. 2010;92A(3):1048–56. doi:10.1002/Jbm.A.32442.

    Google Scholar 

  28. Mendonça G, Mendonça DBS, Aragão FJL, Cooper LF. Advancing dental implant surface technology: from micron- to nanotopography. Biomaterials. 2008;29(28):3822–35. doi:10.1016/j.biomaterials.2008.05.012.

    Article  Google Scholar 

  29. Sul YT, Kang BS, Johansson C, Um HS, Park CJ, Albrektsson T. The roles of surface chemistry and topography in the strength and rate of osseointegration of titanium implants in bone. J Biomed Mater Res A. 2009;89A(4):942–50. doi:10.1002/jbm.a.32041.

    Article  Google Scholar 

  30. Sul YT. The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant. Biomaterials. 2003;24(22):3893–907. doi:10.1016/S0142-9612(03)00261-8.

    Article  Google Scholar 

  31. Hanawa T. In vivo metallic biomaterials and surface modification. Mat Sci Eng A. 1999;267(2):260–6. doi:10.1016/S0921-5093(99)00101-X.

    Article  Google Scholar 

  32. Cipriano CA, Issack PS, Beksac B, Della Valle AG, Sculco TP, Salvati EA. Metallosis after metal-on-polyethylene total hip arthroplasty. Am J Orthop. 2008;37(2):E18–25.

    Google Scholar 

  33. Kerschnitzki M, Wagermaier W, Liu YF, Roschger P, Duda GN, Fratzl P. Poorly ordered bone as an endogenous scaffold for the deposition of highly oriented lamellar tissue in rapidly growing ovine bone. Cells Tissues Organs. 2011;194(2–4):119–23. doi:10.1159/000324467.

    Article  Google Scholar 

  34. Liu YF, Manjubala I, Schell H, Epari DR, Roschger P, Duda GN, et al. Size and habit of mineral particles in bone and mineralized callus during bone healing in sheep. J Bone Miner Res. 2010;25(9):2029–38. doi:10.1002/Jbmr.84.

    Article  Google Scholar 

  35. Guglielmotti MB, Guerrero C, Cabrini RL. Chronodynamic evaluation of the stages of osseointegration in zirconium laminar implants. Acta Odontol Latinoam. 1997;10(1):11–23.

    Google Scholar 

  36. Cipitria A, Lange C, Schell H, Wagermaier W, Reichert JC, Hutmacher DW, et al. Porous scaffold architecture guides tissue formation. J Bone Miner Res. 2012;27(6):1275–88.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank C. Li, S. Siegel, I. Zenke, and B. Schonert for technical support, the Max Planck Gesellschaft (MPG), the Deutscher Akademischer Austauschdienst (DAAD), and the Deutsche Forschungsgemeinschaft (DFG) for funding. Contributions were made possible by DFG funding through the Berlin-Brandenburg School for Regenerative Therapies. As well, we would like to thank A. Cisilino, B. Valcarce, M. Valdes (INTEMA, UNMdP), and C. Perez (LNLS), for the grateful help in different areas of this study and the Brazilian Synchrotron Light Laboratory (LNLS). We also want to thank the National Research Council of Argentina (CONICET), the National Agency for Science and Technology Promotion (ANPCyT - PICT 00550 and 0917), and the National University of Mar del Plata (UNMdP - 15/G331) for financial support. We especially want to thank the PROALAR exchange program (DAAD funding together with MINCyT, Argentina) for enabling the exchanges between our institutes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josefina Ballarre.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Results for the SAXS measurements performed with the same samples as in Fig. 5 but within the epiphysis (TIFF 2709 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoerth, R.M., Katunar, M.R., Gomez Sanchez, A. et al. A comparative study of zirconium and titanium implants in rat: osseointegration and bone material quality. J Mater Sci: Mater Med 25, 411–422 (2014). https://doi.org/10.1007/s10856-013-5074-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-5074-3

Keywords

Navigation