Skip to main content
Log in

Conjugation of amino-bioactive glasses with 5-aminofluorescein as probe molecule for the development of pH sensitive stimuli-responsive biomaterials

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Bioceramics, such as silica-based glasses, are widely used in bone and teeth restoration. Nowadays, the association between nanotechnology and pharmacology is one of the most promising research fields in cancer therapy. The advanced processing methods and new chemical strategies allow the incorporation of drugs within them or on their functionalized surfaces. Bioceramics can act as local drug delivery systems to treat bone and teeth diseases. The present paper reports data related to the development of a pH-stimuli responsive bioactive glass. The glass conjugation with 5-aminofluorescein (5-AF), through a pH-sensitive organic spacer, allows to produce a pH-responsive bioactive biomaterial: when it is exposed to specific pH changes, it can favour the release of 5-AF directly at the target site. 5-AF has been chosen as a simple, low cost, non toxic model to simulate doxorubicin, an anticancer drug. As doxorubicin, 5-AF contains an amino group in its structure in order to form an amide bond with the carboxylic functionalities of the glass. Raman spectroscopy and thermal analysis confirm the glass conjugation of 5-AF by means of an amide bond; the amount of 5-AF loaded was very high (≈65 and 44 wt%). The release tests at two different pH (4.2 and 7.4) show that the amount of released 5-AF is higher at acid pH with respect to physiological one. This preliminary datum evidenced that a pH-sensitive drug delivery system has been developed. The low amount of 5-AF released (<1 wt% of the total 5-AF) is due to the very low solubility of 5-AF in aqueous medium. This disadvantage, may be overcome in a dynamic environment (physiological conditions), where it is possible to obtain a drug release system ensuring an effective therapeutic dose for long times and, at the same time, avoiding the drug toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 3
Fig. 5

Similar content being viewed by others

References

  1. Gentleman E, Polak JM. Historic and current strategies in bone tissue engineering: do we have a hope in Hench? J Mat Sci Mat Med. 2006;17:1029–35.

    Article  Google Scholar 

  2. Arcos D, Vallet-Regì M. Bioceramics for drug delivery. Acta Biomat. 2013;61:890–911.

    Google Scholar 

  3. Manzano M, Vallet-Regi M. Revisiting bioceramics: bone regenerative and local drug delivery systems. Prog Sol State Chem. 2012;40:17–30.

    Article  Google Scholar 

  4. Hench LL. J Am Ceram Soc. 1971;74:487–96.

    Google Scholar 

  5. Li R, Clark AE, Hench LL. J Appl Biomater. 1991;1:231–9.

    Article  Google Scholar 

  6. Vallet-Regi M, Izquierdo-Barba I, Colilla M. Structure and functionalization of mesoporous bioceramics for bone tissue regeneration and local drug delivery. Philos Trans Roy Soc A Math Phys Eng Sci. 2012;370:1400–21.

    Article  Google Scholar 

  7. Lopez-Noriega A, Arcos D, Vallet-Regi M. Functionalizing mesoporous bioglasses for long-term anti-osteoporotic drug delivery. Chem a Europ J. 2010;16:10879–86.

    Article  Google Scholar 

  8. Lamoureux F, Trichet V, Chipoy C, Blanchard F, Gouin F, Redini F. Recent advances in the management of osteosarcoma and forthcoming therapeutic strategies. Exp Rew Antican Ther. 2007;7:169–81.

    Article  Google Scholar 

  9. Langer R, Peppas NA. Advances in biomaterials, drug delivery, and bionanotechnology. AIChE J. 2003;49:2990–3006.

    Article  Google Scholar 

  10. McCoy CP, Brady C, Cowley JF, McGlinchey SM, McGoldrick N, Kinnear DJ, Andrews GP, Jones DS. Triggered drug delivery from biomaterials. Exp Op on Drug Del. 2010;7:605–16.

    Article  Google Scholar 

  11. Vallet-Regì M. Revisiting ceramics for medical applications. Dalton Trans. 2006;44:5211–20.

    Article  Google Scholar 

  12. Verne E, Vitale-Brovarone C, Bui E, Bianchi CL, Boccaccini AR. Surface functionalization of bioactive glasses. J Biomed Mat Res Part A. 2009;90A:981–92.

    Article  Google Scholar 

  13. Contessotto L, Ghedini E, Pinna F, Signoretto M, Cerrato G, Crocella V. Hybrid organic-inorganic silica gel carriers with controlled drug-delivery properties. Chem A Europ J. 2011;15:12043–9.

    Article  Google Scholar 

  14. Arean C, Vesga M, Parra J, Delgado M. Effect of amine and carboxyl functionalization of sub-micrometric MCM-41 spheres on controlled release of cisplatin. Cer Int. 2013;39:7407–14.

    Article  Google Scholar 

  15. Aina V, Marchis T, Cerrato G, Laurenti E, Morterra C, Bergandi L, Ghigo D, Lusvardi G, Malavasi G, Menabue L. Novel bio-conjugate materials to decrease the oxidative stress in in vitro cellular tests: soybean peroxidase immobilized on bioactive glasses. J Mat Chem. 2011;21:10970–81.

    Article  Google Scholar 

  16. Nichele V, Signoretto M, Ghedini E. Beta-galactosidase entrapment in silica gel matrices for a more effective treatment of lactose intolerance. J Mol Cat B Enz. 2011;139:189–96.

    Google Scholar 

  17. Ulbrich K, Etrych T, Chytil P, Jelinkova M, Rihova B. HPMA copolymers with pH-controlled release of doxorubicin—in vitro cytotoxicity and in vivo antitumor activity. J Contr Rel. 2003;87:33–47.

    Article  Google Scholar 

  18. Shen WC, Ryser HJ. Cis-Aconityl spacer between daunomycin and macromolecular carriers: a model of pH-sensitive linkage releasing drug from a lysosomotropic conjugate. Biochem Biophys Res Comm. 1981;102:1048–54.

    Article  Google Scholar 

  19. Manchun S, Dass CR, Sriamornsak P. Targeted therapy for cancer using pH-responsive nanocarrier systems. Life Sci. 2012;90:381–7.

    Article  Google Scholar 

  20. Ulbrich K, Subr V. Polymeric anticancer drugs with pH-controlled activation. Adv Drug Del Rev. 2004;56:1023–50.

    Article  Google Scholar 

  21. Lavignac N, Nicholls JL, Ferruti P, Duncan R. Poly(amidoamine) Conjugates Containing Doxorubicin Bound via an Acid-Sensitive Linker. Macromol Biosci. 2009;9:480–7.

    Article  Google Scholar 

  22. Hu F, Liu L, Du Y, Yuan H. Synthesis and antitumor activity of doxorubicin conjugated stearic acid-g-chitosan oligosaccharide polymeric micelles. Biomaterials. 2009;30:6955–63.

    Article  Google Scholar 

  23. Son Y, Jang J, Cho Y, Chung H, Park R, Kwon I, Kim I, Park J, Seo S, Park C, Jeong S. Biodistribution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect. J Cont Rel. 2003;91:135–45.

    Article  Google Scholar 

  24. Yoo SY, Lee TL, Yoon JY, Lee IL, Kim MK, Lee HL. Interfacial adhesion reaction of polyethylene and starch blends using maleated polyethylene reactive compatibilizer. J Appl Pol Sci. 2002;83:767–76.

    Article  Google Scholar 

  25. Zhang H, Li F, Yi J, Cu C, Fan L, Qiao Y, Tao Y, Cheng C, Wu H. Folate-decorated maleilated pullulan-doxorubicin conjugate for active tumor-targeted drug delivery. Europ J Pharm Sci. 2011;42:517–26.

    Article  Google Scholar 

  26. Kazarian A, Hilder E, Breadmore M. Utilisation of pH stacking in conjunction with a highly absorbing chromophore, 5-aminofluorescein, to improve the sensitivity of capillary electrophoresis for carbohydrate analysis. J Chromatog A. 2008;1200:84–91.

    Article  Google Scholar 

  27. Boga C, Puggioli S, Gherpelli M, Farruggia G, Pagnotta E, Masotti L, Neyroz P. Fluorescein conjugates of 9-and 10-hydroxystearic acids: synthetic strategies, photophysical characterization, and confocal microscopy applications. Anal Biochem. 2004;335:196–209.

    Article  Google Scholar 

  28. Miletto I, Gilardino A, Zamburlin P, Dalmazzo S, Lovisolo D, Caputo G, Viscardi G, Martra G. Highly bright and photostable cyanine dye-doped silica nanoparticles for optical imaging: photophysical characterization and cell tests. Dyes and Pigm. 2010;84:121–7.

    Article  Google Scholar 

  29. Barbero N, Barni E, Barolo C, Quagliotto P, Viscardi G, Napione L, Pavan S, Bussolino F. A study of the interaction between fluorescein sodium salt and bovine serum albumin by steady-state fluorescence. Dyes and Pigm. 2009;80:307–13.

    Article  Google Scholar 

  30. Alberto G, Miletto I, Viscardi G, Caputo G, Latterini L, Coluccia S, Martra G. Hybrid cyanine-silica nanoparticles: homogeneous photoemission behaviour of entrapped fluorophores and consequent high brightness enhancement. J Phys Chem C. 2009;113:21048–53.

    Article  Google Scholar 

  31. Reddy P, Kondo S, Fujita S, Toru T. Efficient synthesis of fluorophore-linked maleimide derivatives. Synth-Stutt. 1998;7:999–1002.

    Article  Google Scholar 

  32. Remenyi J, Balazs B, Toth S, Falus A, Toth G, Hudecz F. Isomer-dependent daunomycin release and in vitro antitumour effect of cis-aconityl-daunomycin. Biochem Biophys Res Comm. 2003;303:556–61.

    Article  Google Scholar 

  33. Kakinoki A, Kaneo Y, Ikeda Y, Tanaka T, Fujita K. Synthesis of poly(vinyl alcohol)-doxorubicin conjugates containing cis-aconityl acid-cleavable bond and its isomer dependent doxorubicin release. Biol Pharm Bull. 2008;31:103–10.

    Article  Google Scholar 

  34. Lusvardi G, Malavasi G, Menabue L, Shruti S. Gallium-containing phosphosilicate glasses: functionalization and in vitro bioactivity. Mater Sci Eng, C. 2013;33:3190–6.

    Article  Google Scholar 

  35. Dugas V, Elaissari A, Chevalier Y. Surface sensitization techniques and recognition receptors immobilization on biosensors and microarrays. Recog. Recep. In: Zourob M, editor. Biosensor. New York: Springer; 2010. p. 134.

  36. Asenath SE, Che W. How to prevent the loss of surface functionality derived from aminosilanes. Langmuir. 2008;24:12405–9.

    Article  Google Scholar 

  37. Russo L, Taraballi F, Lupo C, Poveda A, Jimenez-Barbero J, Sandri M, Tampieri A, Nicotra F, Cipolla R. Carbonate hydroxyapatite functionalization: a comparative study towards (bio)molecules fixation. Interf Focus. 2014;4:20130040–65.

    Article  Google Scholar 

  38. Calculated using Advanced Chemistry development (ACD/Labs) Software V11.02 (c 1994-2013 ACD/Labs).

  39. Ray-Coquard I, Le Cesne A. A role for maintenance therapy in managing sarcoma. Canc Treat Rev. 2012;35:368–78.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Compagnia di San Paolo for the financial support (Project: ORTO11RRT5). G.L. acknowledges Fondazione di Vignola for the financial support (Progetto “Materiali per la teranostica: progettazione di sistemi contenenti nanoparticelle e molecole di interesse biologico”). All authors acknowledge Dr. C. Giovannoli of University of Torino for acid-basic titration measurements, Prof. E. Diana of University of Torino for Raman measurements. The authors thank Ms. F. Malafronte and Mr. W. Intelisano for their valuable help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Aina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aina, V., Malavasi, G., Magistris, C. et al. Conjugation of amino-bioactive glasses with 5-aminofluorescein as probe molecule for the development of pH sensitive stimuli-responsive biomaterials. J Mater Sci: Mater Med 25, 2243–2253 (2014). https://doi.org/10.1007/s10856-014-5206-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5206-4

Keywords

Navigation