Skip to main content

Advertisement

Log in

Investigating the effect of SiO2–TiO2–CaO–Na2O–ZnO bioactive glass doped hydroxyapatite: characterisation and structural evaluation

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The effects of increasing bioactive glass additions, SiO2–TiO2–CaO–Na2O–ZnO up to 25 wt% in increments of 5 wt%, on the physical and mechanical properties of hydroxyapatite (HA) sintered at 900, 1000, 1100 and 1200 °C for 2 h was investigated. Increasing both the glass content and the temperature resulted in increased HA decomposition. This resulted in the formation of a number of bioactive phases. However the presence of the liquidus glass phase did not result in increased densification levels. At 1000 and 1100 °C the additions of 5 wt% glass resulted in a decrease in density which never recovered with increasing glass content. At 1200 °C a cyclic pattern resulted from increasing glass content. There was no direct relationship between strength and density with all samples experiencing no change or a decrease in strength with increasing glass content. Weibull statistics displayed no pattern with increasing glass content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kalita S, Bhardwaj A, Bhatt H. Nanocrystalline calcium phosphate ceramics in biomedical engineering. Mater Sci Eng C. 2007;27(3):441–9.

    Article  Google Scholar 

  2. Wang M. Developing bioactive composite materials for tissue replacement. Biomaterials. 2003;24(13):2133–51.

    Article  Google Scholar 

  3. Manley M, Sutton K, Dumbleton J. Calcium phosphates: a survey of the orthopaedic literature. In: Epinette J, Manley M, editors. Fifteen years of clinical experience with hydroxyapatite coatings in joint arthroplasty. 452 New York: Springer; 2003. p. 452.

    Google Scholar 

  4. Itoh S, Kikuchi M, Takakuda K, Koyama Y, Matsumoto H, Ichinose S, et al. The biocompatibility and osteoconductive activity of a novel hydroxyapatite/collagen composite biomaterial, and its function as a carrier of rhBMP-2. J Biomed Mater Res. 2001;54(3):445–53.

    Article  Google Scholar 

  5. Anselme K, Noël B, Flautre B, Blary M, Delecourt C, Descamps M, et al. Association of porous hydroxyapatite and bone marrow cells for bone regeneration. Bone. 1999;25(2, Supplement 1):51S–54S.

    Google Scholar 

  6. Erbe E, Marx J, Clineff T, Bellincampi L. Potential of an ultraporous β-tricalcium phosphate synthetic cancellous bone void filler and bone marrow aspirate composite graft. Eur Spine J. 2001;10(2):S141–6.

    Article  Google Scholar 

  7. Klein C, Driessen A, de Groot K, van den Hooff A. Biodegradation behavior of various calcium phosphate materials in bone tissue. J Biomed Mater Res. 1983;17(5):769–84.

    Article  Google Scholar 

  8. Hayek E, Newesely H, Rumpel M. Pentacalcium Monohydroxyorthophosphate. In: Kleinberg J, editor. Inorganic Syntheses [Internet]. New York: Wiley; 2007. p. 63–5. http://onlinelibrary.wiley.com/doi/10.1002/9780470132388.ch17/summary. Accessed 9 Jun 2013.

  9. Royer A, Viguie J, Heughebaert M, Heughebaert J. Stoichiometry of hydroxyapatite: influence on the flexural strength. J Mater Sci Mater Med. 1993;4(1):76–82.

    Article  Google Scholar 

  10. Ramachandra Rao R. Synthesis and sintering of hydroxyapatite–zirconia composites. Mater Sci Eng C. 2002;20(1–2):187–93.

    Google Scholar 

  11. Ioku K, Yoshimura M, Sōmiya S. Microstructure and mechanical properties of hydroxyapatite ceramics with zirconia dispersion prepared by post-sintering. Biomaterials. 1990;11(1):57–61.

    Article  Google Scholar 

  12. Guo H. Laminated and functionally graded hydroxyapatite/yttria stabilized tetragonal zirconia composites fabricated by spark plasma sintering. Biomaterials. 2003;24(4):667–75.

    Article  Google Scholar 

  13. Sung Y, Shin Y, Ryu J. Preparation of hydroxyapatite/zirconia bioceramic nanocomposites for orthopaedic and dental prosthesis applications. Nanotechnology. 2007;18(6):065602.

    Article  Google Scholar 

  14. Yoshida K. Fabrication of structure-controlled hydroxyapatite/zirconia composite. J Eur Ceram Soc. 2006;26(4–5):515–8.

    Article  Google Scholar 

  15. Rao W, Boehm R. A study of sintered apatites. J Dent Res. 1974;53(6):1351–4.

    Article  Google Scholar 

  16. Jarcho M, Bolen C, Thomas M, Bobick J, Kay J, Adamson R. Hydroxylapatite synthesis and characterization in dense polycrystalline form. J Mater Sci. 1976;11(11):2027–35.

    Article  Google Scholar 

  17. Nagarajan V, Rao K. Structural, mechanical and biocompatibility studies of hydroxyapatite-derived composites toughened by zirconia addition. J Mater Chem. 1993;3(1):43–51.

    Article  Google Scholar 

  18. Hing K, Gibson I, Di-Silvio L, Best S, Bonfield W. Effect of variation in Ca: P ratio on cellular response of primary human osteoblast-like cells to hydroxyapatite-based ceramics. Bioceramics Conference. 1998. p. 293–6.

  19. Curran D, Fleming T, Towler M, Hampshire S. Mechanical properties of hydroxyapatite–zirconia compacts sintered by two different sintering methods. J Mater Sci Mater Med. 2010;21(4):1109–20.

    Article  Google Scholar 

  20. Adolfsson E, Alberius-Henning P, Hermansson L. Phase analysis and thermal stability of hot isostatically pressed zirconia–hydroxyapatite composites. J Am Ceram Soc. 2000;83(11):2798–802.

    Article  Google Scholar 

  21. Li J, Hermansson L, Söremark R. High-strength biofunctional zirconia: mechanical properties and static fatigue behaviour of zirconia–apatite composites. J Mater Sci Mater Med. 1993;4(1):50–4.

    Article  Google Scholar 

  22. Shen Z, Adolfsson E, Nygren M, Gao L, Kawaoka H, Niihara K. Dense hydroxyapatite–zirconia ceramic composites with high strength for biological applications. Adv Mater. 2001;13(3):214–6.

    Article  Google Scholar 

  23. Li W. Fabrication of HAp–ZrO2 (3Y) nano-composite by SPS. Biomaterials. 2003;24(6):937–40.

    Article  Google Scholar 

  24. Choi J, Kong Y, Kim H, Lee I. Reinforcement of hydroxyapatite bioceramic by addition of Ni3Al and Al2O3. J Am Ceram Soc. 1998;81(7):1743–8.

    Article  Google Scholar 

  25. Asmus S, Sakakura S, Pezzotti G. Hydroxyapatite toughened by silver inclusions. J Compos Mater. 2003;37(23):2117–29.

    Article  Google Scholar 

  26. Chaki T, Wang P. Densification and strengthening of silver-reinforced hydroxyapatite-matrix composite prepared by sintering. J Mater Sci Mater Med. 1994;5(8):533–42.

    Article  Google Scholar 

  27. Zhang X, Gubbels G, Terpstra R, Metselaar R. Toughening of calcium hydroxyapatite with silver particles. J Mater Sci. 1997;32(1):235–43.

    Article  Google Scholar 

  28. Nath S, Kalmodia S, Basu B. Densification, phase stability and in vitro biocompatibility property of hydroxyapatite-10 wt% silver composites. J Mater Sci Mater Med. 2010;21(4):1273–87.

    Article  Google Scholar 

  29. Kokubo T, Shigematsu M, Nagashima Y, Tashiro M, Nakamura T, Yamamuro T, et al. Apatite-and wollastonite-containing glass-ceramics for prosthetic application. Bull Inst Chem Res Kyoto Univ. 1982;60(3–4):260–8.

    Google Scholar 

  30. Wren A, Boyd D, Towler MR. The processing, mechanical properties and bioactivity of strontium based glass polyalkenoate cements. J Mater Sci Mater Med. 2008;19(4):1737–43.

    Article  Google Scholar 

  31. Williams J, Billington R. Changes in compressive strength of glass ionomer restorative materials with respect to time periods of 24 h to 4 months. J Oral Rehabil. 1991;18(2):163–8.

    Article  Google Scholar 

  32. Ruys A, Wei M, Sorrell C, Dickson M, Brandwood A, Milthorpe B. Sintering effects on the strength of hydroxyapatite. Biomaterials. 1995;16(5):409–15.

    Article  Google Scholar 

  33. Liu D, Chou H. Formation of a new bioactive glass-ceramic. J Mater Sci Mater Med. 1994;5(1):7–10.

    Article  Google Scholar 

  34. Kokubo T. Bioactive glass ceramics: properties and applications. Biomaterials. 1991;12(2):155–63.

    Article  Google Scholar 

  35. Ravaglioli A, Krajewski A, De Portu G. Problems involved in assessing mechanical behaviour of bioceramics. Bioceramics. 1989;18:13–8.

    Google Scholar 

  36. Xiang Y, Du J, Skinner L, Benmore C, Wren A, Boyd D, et al. Structure and diffusion of ZnO–SrO–CaO–Na2O–SiO2 bioactive glasses: a combined high energy X-ray diffraction and molecular dynamics simulations study. RSC Adv. 2013;3(17):5966.

    Article  Google Scholar 

  37. Wren AW, Keenan T, Coughlan A, Laffir FR, Boyd D, Towler MR, et al. Characterisation of Ga2O3–Na2O–CaO–ZnO–SiO2 bioactive glasses. J Mater Sci. 2013;48(11):3999–4007.

    Article  Google Scholar 

  38. Wren A, Coughlan A, Smale K, Misture S, Mahon B, Clarkin O, et al. Fabrication of CaO–NaO–SiO2/TiO2 scaffolds for surgical applications. J Mater Sci Mater Med. 2012;23(12):2881–91.

    Article  Google Scholar 

  39. Wren A, Akgun B, Adams B, Coughlan A, Mellott N, Towler M. Characterization and antibacterial efficacy of silver-coated Ca–Na–Zn–Si/Ti glasses. J Biomater Appl. 2012;27(4):433–43.

    Article  Google Scholar 

  40. Brook I, Freeman C, Grubb S, Cummins N, Curran D, Reidy C, et al. Biological evaluation of nano-hydroxyapatite–zirconia (HA–ZrO2) composites and strontium–hydroxyapatite (Sr–HA) for load-bearing applications. J Biomater Appl. 2012;27(3):291–8.

    Article  Google Scholar 

  41. Towler M, Hampshire S, Reidy D, Curran D, Fleming T. Comparison of microwave and conventionally sintered yttria doped zirconia ceramics and hydroxyapatite‐zirconia nanocomposites. In: Ohji T, Singh M, editors. Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials V: Ceramic Engineering and Science Proceedings. New York: Wiley; 2011.

  42. Williams J, Billington R, Pearson G. The effect of the disc support system on biaxial tensile strength of a glass ionomer cement. Dent Mater. 2002;18(5):376–9.

    Article  Google Scholar 

  43. Quinn J, Quinn G. A practical and systematic review of Weibull statistics for reporting strengths of dental materials. Dent Mater. 2010;26(2):135–47.

    Article  Google Scholar 

  44. Santos J, Knowles J, Reis R, Monteiro F, Hastings G. Microstructural characterization of glass-reinforced hydroxyapatite composites. Biomaterials. 1994;15(1):5–10.

    Article  Google Scholar 

  45. Kangasniemi I, DeGroot K, Wolke J, Andersson O, Luklinska Z, Becht J, et al. The stability of hydroxyapatite in an optimized bioactive glass matrix at sintering temperatures. J Mater Sci Mater Med. 1991;2(3):133–7.

    Article  Google Scholar 

  46. Knowles J, Bonfield W. Development of a glass reinforced hydroxyapatite with enhanced mechanical properties. The effect of glass composition on mechanical properties and its relationship to phase changes. J Biomed Mater Res. 1993;27(12):1591–8.

    Article  Google Scholar 

  47. Kondo N, Ogose A, Tokunaga K, Umezu H, Arai K, Kudo N, et al. Osteoinduction with highly purified β-tricalcium phosphate in dog dorsal muscles and the proliferation of osteoclasts before heterotopic bone formation. Biomaterials. 2006;27(25):4419–27.

    Article  Google Scholar 

  48. Cao W, Hench L. Bioactive materials. Ceram Int. 1996;22(6):493–507.

    Article  Google Scholar 

  49. Hench L. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74(7):1487–510.

    Article  Google Scholar 

  50. Georgiou G, Knowles J. Glass reinforced hydroxyapatite for hard tissue surgery—Part 1: mechanical properties. Biomaterials. 2001;22(20):2811–5.

    Article  Google Scholar 

  51. Wu C, Chang J, Zhai W. A novel hardystonite bioceramic: preparation and characteristics. Ceram Int. 2005;31(1):27–31.

    Article  Google Scholar 

  52. Lu H, Kawazoe N, Tateishi T, Chen G, Jin X, Chang J. In vitro proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells cultured with hardystonite (Ca2ZnSi2O7) and β-TCP ceramics. J Biomater Appl. 2010;25(1):39–56.

    Article  Google Scholar 

  53. Bohner M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury. 2000;31(Supplement 4):D37–47.

    Article  Google Scholar 

  54. Jinawath S, Pongkao D, Suchanek W, Yoshimura M. Hydrothermal synthesis of monetite and hydroxyapatite from monocalcium phosphate monohydrate. Int J Inorg Mater. 2001;3(7):997–1001.

    Article  Google Scholar 

  55. Ryu H, Youn H, Sun Hong K, Chang B, Lee C, Chung S. An improvement in sintering property of β-tricalcium phosphate by addition of calcium pyrophosphate. Biomaterials. 2002;23(3):909–14.

    Article  Google Scholar 

  56. Hessle L, Johnson K, Anderson H, Narisawa S, Sali A, Goding J, et al. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci. 2002;99(14):9445–9.

    Article  Google Scholar 

  57. Ooms E, Wolke J, van de Heuvel M, Jeschke B, Jansen J. Histological evaluation of the bone response to calcium phosphate cement implanted in cortical bone. Biomaterials. 2003;24(6):989–1000.

    Article  Google Scholar 

  58. Asami K, Saito K, Ohtsu N, Nagata S, Hanawa T. Titanium-implanted CaTiO3 films and their changes in Hanks’ solution. Surf Interface Anal. 2003;35(5):483–8.

    Article  Google Scholar 

  59. Manso M, Langlet M, Martinez-Duart J. Testing sol–gel CaTiO3 coatings for biocompatible applications. Mater Sci Eng C. 2003;23(3):447–50.

    Article  Google Scholar 

  60. Gou Z, Chang J, Zhai W. Preparation and characterization of novel bioactive dicalcium silicate ceramics. J Eur Ceram Soc. 2005;25(9):1507–14.

    Article  Google Scholar 

  61. Liu X, Xie Y, Ding C, Chu P. Early apatite deposition and osteoblast growth on plasma-sprayed dicalcium silicate coating. J Biomed Mater Res A. 2005;74A(3):356–65.

    Article  Google Scholar 

  62. Zhang M, Zhai W, Chang J. Preparation and characterization of a novel willemite bioceramic. J Mater Sci Mater Med. 2010;21(4):1169–73.

    Article  Google Scholar 

  63. De Aza P, Guitian F, De Aza S. Bioactivity of wollastonite ceramics: in vitro evaluation. Scr Metall Mater. 1994;31(8):1001–5.

    Article  Google Scholar 

  64. Oktar F, Göller G. Sintering effects on mechanical properties of glass-reinforced hydroxyapatite composites. Ceram Int. 2002;28(6):617–21.

    Article  Google Scholar 

  65. Santos J, Reis R, Monteiro F, Knowles J, Hastings G. Liquid phase sintering of hydroxyapatite by phosphate and silicate glass additions: structure and properties of the composites. J Mater Sci Mater Med. 1995;6(6):348–52.

    Article  Google Scholar 

  66. Lopes M, Monteiro F, Santos J. Glass-reinforced hydroxyapatite composites: fracture toughness and hardness dependence on microstructural characteristics. Biomaterials. 1999;20(21):2085–90.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Declan J. Curran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yatongchai, C., Wren, A.W., Curran, D.J. et al. Investigating the effect of SiO2–TiO2–CaO–Na2O–ZnO bioactive glass doped hydroxyapatite: characterisation and structural evaluation. J Mater Sci: Mater Med 25, 1645–1659 (2014). https://doi.org/10.1007/s10856-014-5215-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5215-3

Keywords

Navigation