Skip to main content

Advertisement

Log in

Investigating the influence of Na+ and Sr2+ on the structure and solubility of SiO2–TiO2–CaO–Na2O/SrO bioactive glass

  • Biomaterials Synthesis and Characterization
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This study was conducted to determine the influence that network modifiers, sodium (Na+) and strontium (Sr2+), have on the solubility of a SiO2–TiO2–CaO–Na2O/SrO bioactive glass. Glass characterization determined each composition had a similar structure, i.e. bridging to non-bridging oxygen ratio determined by X-ray photoelectron spectroscopy. Magic angle spinning nuclear magnetic resonance (MAS-NMR) confirmed structural similarities as each glass presented spectral shifts between −84 and −85 ppm. Differential thermal analysis and hardness testing revealed higher glass transition temperatures (Tg 591–760 °C) and hardness values (2.4–6.1 GPa) for the Sr2+ containing glasses. Additionally the Sr2+ (~250 mg/L) containing glasses displayed much lower ion release rates than the Na+ (~1,200 mg/L) containing glass analogues. With the reduction in ion release there was an associated reduction in solution pH. Cytotoxicity and cell adhesion studies were conducted using MC3T3 Osteoblasts. Each glass did not significantly reduce cell numbers and osteoblasts were found to adhere to each glass surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

References

  1. Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomat. 2013;9:4457–86.

    Article  Google Scholar 

  2. Hench LL. The story of bioglass. J Mat Sci. 2006;17:967–78.

    Google Scholar 

  3. Hench LL, Day DE, Holand W, Rheinberger VW. Glass and medicine. Int J App Glass Sci. 2010;1:104–17.

    Article  Google Scholar 

  4. Rahaman M, Day D, Bal B, Fu Q, Jung S, Bonewald L, Tomsia A. Bioactive glass in tissue engineering. Acta Biomat. 2011;6:2235–73.

    Google Scholar 

  5. Chen QZ, Thompson ID, Boccaccini AR. 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials. 2006;27:2414–25.

    Article  Google Scholar 

  6. Serra J, Gonzalez P, Liste S, Chiussi S, Leon B, Perez-amor M, Ylanen HO, Hupa M. Influence of the non-bridging oxygen groups on the bioactivity of silicate glasses. J Mat Sci. 2002;13:1221–5.

    Google Scholar 

  7. Serra J, González P, Liste S, Serra C, Chiussi S, León B, Pérez-Amor M, Ylänen HO, Hupa M. FTIR and XPS studies of bioactive silica based glasses. J Non-Crys Sol. 2003;332:20–7.

    Article  Google Scholar 

  8. Branda F, Arcobello-Varlese F, Costantini A, Luciani G. Effect of the substitution of M2O3 (M = La, Y, In, Ga, Al) for CaO on the bioactivity of 2.5CaO-2SiO2 glass. Biomat. 2002;23:711–6.

    Article  Google Scholar 

  9. Shelby JE. Introduction to glass science and technology. 2nd ed. Cambridge: The Royal Society of Chemistry; 2005.

    Google Scholar 

  10. Baker DR. Diffusion of silicon and gallium (as an analogue for aluminum) network-forming cations and their relationship to viscosity in albite melt. Geochim Cosmochim Acta. 1995;59:3561–71.

    Article  Google Scholar 

  11. Mysen BO, Virgo D, Kushiro I. The structural role of aluminium in silicate melts—a Raman spectroscopic study at 1 atmosphere. Amer Mineral. 1981;66:678–701.

    Google Scholar 

  12. Marie PJ. Strontium ranelate: new insights into its dual mode of action. Bone. 2007;40:S5–9.

    Article  Google Scholar 

  13. Marie PJ. Strontium ranelate; a novel mode of action optimizing bone formation and resorption. Osteopor Int. 2005;16:S7–10.

    Article  Google Scholar 

  14. Boyd D, Towler MR, Watts S, Hill R, Wren AW, Clarkin OM. The role of Sr2+ on the structure and reactivity of SrO-CaO-ZnO-SiO2 ionomer glasses. J Mat Sci. 2008;19:953–7.

    Google Scholar 

  15. Aguiar H, Serra J, González P, León B. Structural study of sol–gel silicate glasses by IR and Raman spectroscopies. J Non-Cryst Sol. 2009;355:475–80.

    Article  Google Scholar 

  16. McMillian PW. Structural studies of silicate glasses and melt-applications and limitations of Raman spectroscopy. Am Mineral. 1984;69:622–44.

    Google Scholar 

  17. Hayakawa S, Osaka A, Nishioka H, Matsumoto S, Minura Y. Structure of lead oxyfluorosilicate glasses: X-ray photoelectron spectroscopy and nuclear magnetic resonance spectroscopy and molecular dynamics simulation. J Non-Cryst Sol. 2000;272:103–18.

    Article  Google Scholar 

  18. Galliano PG, Porto JM, Spezl L, Varetti EL, Sobrados I, Sanz J. Analysis by nuclear magnetic resonance and raman spectroscopies of the structure of bioactive alkaline-earth silicophosphate glasses. Mat Res Bull. 1994;29:1297–306.

    Article  Google Scholar 

  19. Murphy S, Wren AW, Towler MR, Boyd D. The effect of ionic dissolution products of Ca–Sr–Na–Zn–Si bioactive glass on in vitro cytocompatibility. J Mat Sci. 2010;10:2827–34.

    Google Scholar 

  20. Hoppe A, Guldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32:2757–74.

    Article  Google Scholar 

  21. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity. Biomat. 2006;27:2907–15.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. W. Wren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Placek, L.M., Coughlan, A. et al. Investigating the influence of Na+ and Sr2+ on the structure and solubility of SiO2–TiO2–CaO–Na2O/SrO bioactive glass. J Mater Sci: Mater Med 26, 85 (2015). https://doi.org/10.1007/s10856-015-5415-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5415-5

Keywords

Navigation