Skip to main content
Log in

Antibacterial and anticancerous drug loading kinetics for (10-x)CuO-xZnO-20CaO-60SiO2-10P2O5 (2 ≤ x ≤ 8) mesoporous bioactive glasses

  • Delivery Systems
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In the present study, antibacterial and anticancerous drug loading kinetics for the (10-x)CuO-xZnO-20CaO-60SiO2-10P2O5 (2≤x≤8, varying in steps of 2) mesoporous bioactive glasses (MBGs) have been studied. XRD analysis of the as prepared glass samples proved its amorphous nature. Scanning electron microscopy (SEM) revealed the apatite layer formation on the surface of the MBGs after soaking for 15 days in SBF. Ion dissolution studies of calcium, phosphorous and silicon have been performed using inductively coupled plasma (ICP). FTIR and Raman analysis depicted about the presence of various bonds and groups present in the glasses. The pore size of MBGs lies in the range of 4.2–9.7 nm. Apart from this, specific surface area of the MBGs varied from 263 to 402 cm2/g. The MBGs were loaded with Doxorubicin (DOX), Vancomycin (VANCO) and Tetracycline (TETRA) drugs among which, the decreasing copper content influenced the loading properties of doxorubicin and tetracycline drugs. Vancomycin was fully loaded almost in all the MBGs, whereas other drugs depicted varying loading with respect to the copper content.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kaur G, Pickrell G, Sriranganathan N, Kumar V, Homa D. Review and the state of the art: sol–gel and melt quenched bioactive glasses for tissue engineering. J Biomed Mater Res B. 2015;104:1248–75.

    Article  Google Scholar 

  2. Kaur G, Pandey OP, Singh K, Homa D, Scott B, Pickrell G. A review of Bioactive glasses: their structure, properties, fabrication and apatite formation. J Biomed Mater Res A. 2014;102(1):254–74.

  3. Li HC, Wang DG, Hu JH, Chen CZ. Crystallization, mechanical properties and in vitro bioactivity of sol–gel derived Na2O–CaO–SiO2–P2O5 glass–ceramics by partial substitution of CaF2 for CaO. J Sol Gel Sci Technol. 2013;67:56–65.

    Article  Google Scholar 

  4. AJA PN, AJA AH, PENA P and AJA S. Bioactive glasses and glass ceramics. Bol Soc Esp Ceram Vid. 2007;46(2):45–55.

  5. Hum J, Boccaccini A R. Bioactive glasses as carriers for bioactive molecules and therapeutic drugs: a review. J Mater Sci. 2012;23(10):2317–33.

  6. Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP. Bioactive glass in tissue engineering. Acta Biomater. 2011;7:2355–73.

    Article  Google Scholar 

  7. Du RL, Chang J, Ni SY, Zhai WY. Characterization and in vitro bioactivity of zinc-containing bioactive glass and glassceramics. J Biomater Appl. 2006;20:341–60.

    Article  Google Scholar 

  8. Kaur G, Pandey OP, Singh K,Chudasama B, Kumar V. Combined and individual doxorubicin/vancomycin drug loading, release kinetics and apatite formation for the CaO–CuO–P2O5–SiO2–B2O3 mesoporous glasses. RSC. 2016;6:51046–56.

  9. Goel A, Kapoor S, Tilocca A, Rajagopal RR, Ferreira JMF. Structural role of zinc in biodegradation of alkali-free bioactive glasses. J Mater Chem B. 2013;1:3073–82.

    Article  Google Scholar 

  10. Venkatesan J, Pallela R, Bhatnagar I, Kim SK. Chitosan-amylopectin/hydroxyapatite and chitosan-chondroitin sulphate/hydroxyapatite composite scaffolds for bone tissue engineering. Int J Biol Macromol. 2012;51:1033–42.

    Article  Google Scholar 

  11. Xia W, Chang J. Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system. J Control Release. 2006;110:522–30.

    Article  Google Scholar 

  12. Noriega AL, Arcos D, Barba II, Sakamoto Y, Terasaki O, Regı MV. Ordered mesoporous bioactive glasses for bone tissue regeneration. Chem Mater. 2006;18:3137–44.

    Article  Google Scholar 

  13. Wu C, Zhang Y, Zhu Y, Friis T, Xiao Y. Structure–property relationships of silk-modified mesoporous bioglass scaffolds. Biomaterials. 2010;31:3429–38.

    Article  Google Scholar 

  14. Wu C, Fan W, Gelinsky M, Xiao Y, Simon P, Schulze R, Doert T, Luo Y, Cuniberti G. Bioactive SrO-SiO2 glass with well-ordered mesopores: characterization, physiochemistry and biological properties. Acta Biomater. 2011;7:1797–806.

    Article  Google Scholar 

  15. Regi MV, Balas F, Arcos D. Mesoporous materials for drug delivery. Angew Chem Int Ed. 2007;46:7548–58.

    Article  Google Scholar 

  16. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Descov. 2005;4:145–60.

    Article  Google Scholar 

  17. Yoo W, Lee CH. Drug delivery system for harmone. J Control Release. 2006;112:1–14.

    Article  Google Scholar 

  18. Malmsten M. Soft drug delivery system. Soft Mater. 2006;2:760–9.

    Article  Google Scholar 

  19. Regi MV. Ordered mesoporous materials in the context of drug delivery systems and bone tisue engineering. Chem Eur J. 2006;12:5934–43.

    Article  Google Scholar 

  20. Regi MV, Ramila A, Real RP. A new property of MCM-41: drug delivery system. J Perez-Pariente Chem Mater. 2001;13:308–311.

    Article  Google Scholar 

  21. Fournier E, Passirani C, Montero-Menei CN, Benoit JP. Biocompatibilty of implantable synthetic polymer drug carriers: focus on brain biocompatibility. Biomater. 2003;24:3311–31.

    Article  Google Scholar 

  22. Day RM, Boccaccini AR, Shurey S, Roether JA, Forbes A, Hench LL, Gabe SM. Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds. Biomaterials. 2004;25:5857–66.

    Article  Google Scholar 

  23. Day RM. Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro. Tissue Eng. 2005;11:768–77.

    Article  Google Scholar 

  24. Gorustovich AA, Roether JA, Boccaccini AR. Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Eng Part B Rev. 2009;16:199–207.

    Article  Google Scholar 

  25. Leu A, Stieger SM, Dayton P, Ferrara KW, Leach JK. Angiogenic response to bioactive glass promotes bone healing in an irradiated calvarial defect. Tissue Eng Part A. 2009;15:877–85.

    Article  Google Scholar 

  26. Jones JR, Ehrenfried LM, Hench LL. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials. 2006;27:964–73.

    Article  Google Scholar 

  27. Liu H, Webster TJ. Nanomedicine for implants: a review of studies and necessary experimental tools. Biomaterials. 2007;28:354–69.

    Article  Google Scholar 

  28. Wu C, Chang J. Mesoporous bioactive glasses: structure characteristics, drug/growth factor delivery and bone regeneration application. Interface Focus. 2012;2:292–306.

    Article  Google Scholar 

  29. Li Y, Liu YZ, Long T, Yu XB, Tang TT, Dai KR, Tian B, Guo YP, Zhu ZA. Mesoporous bioactive glass as a drug delivery system: fabrication, bactericidal properties and biocompatibility. J Mater Sci. 2013;24:1951–61.

    Google Scholar 

  30. Lu H, Kawazoe N, Kitajima T, Myoken Y, Tomita M, Umezawa A, Chen G, Ito Y. Spatial immobilization of bone morphogenetic protein-4 in a collagen-PLGA hybrid scaffold for enhanced osteoinductivity. Biomaterials. 2012;33:6140–6.

    Article  Google Scholar 

  31. Liu X, Rahaman MN, Fu Q. Bone regeneration in strong porous bioactive glass (13–93) scaffolds with an oriented microstructure implanted in rat calvarial defects. Acta Biomater. 2013;9:4889–98.

    Article  Google Scholar 

  32. Nguyen TH, Lee BT. In vitro and in vivo studies of rhBMP2-coated PS/PCL fibrous scaffolds for bone regeneration. J Biomed Mater Res A. 2013;101:797–808.

    Article  Google Scholar 

  33. Wu C, Zhou Y, Xu M, Han P, Chen L, Chang J, Xiao Y. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomater. 2013;34:422–33.

    Article  Google Scholar 

  34. Park JK, Shim JH, Kang KS, Yeom J, Jung HS, Kim JY, et al. Solid free-formfabrication of tissue-engineering scaffolds with a poly(lactic-co-glycolic acid) grafted hyaluronic acid conjugate encapsulating an intact bone morphogenetic protein-2/poly(ethylene glycol) complex. Adv Funct Mater. 2011;21:2906–12.

    Article  Google Scholar 

  35. Baino F, Fiorilli S, Brovarone CV. Bioactive glass-based materials with hierarchical porosity for medical applications: Review of recent advances. Acta Biomater. 2016;42:18–32.

    Article  Google Scholar 

  36. Wu C, Chang J. Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors. J Control Release. 2014;193:282–95.

  37. Hench LL, Thompson I. Twenty-first century challenges for biomaterials. J R Soc Interface. 2010;7(4):S379–91.

  38. Wu C, Zhou Y, Xu M, Han P, Chen L, Chang J, Xiao Y. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomater. 2013;34:422–33.

    Article  Google Scholar 

  39. Kim TG, Shin H, Lim DW. Biomimetic scaffolds for tissue engineering. Adv Funct Mater. 2012;22:2446–68.

    Article  Google Scholar 

  40. Wang C, Xue Y, Lin K, Lu J, Chang J, Sun J. The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using beta-CaSiO3/beta-Ca3(PO4)2 composite bioceramics. Acta Biomater. 2012;8:350–360.

    Article  Google Scholar 

  41. Hu YC, Zhong JP. Osteostimulation of bioglass. Chin Med J (Engl). 2009;122:2386–9.

    Google Scholar 

  42. Freeman AL, MD and Mayhew E. Targeted Drug Deliv. Cancer. 1986;58:573–83.

  43. McCarthy TJ, Zeelie JJ, Krause DJ. The antimicrobial action of zinc ion/antioxidant combinations. J Clin Pharm Ther. 1992;17:51–54.

    Article  Google Scholar 

  44. Solomons NW. Mild human zinc deficiency produces an imbalance between cell-mediated and humoral immunity. Nutr Rev. 1998;56:27–28.

    Article  Google Scholar 

  45. Prasad AS. Zinc: an overview. Nutrition. 1995;11:93–9.

    Google Scholar 

  46. Harris ED. Copper homeostasis: the role of cellular transporters. Nutr Rev. 2001;59:281–5.

    Article  Google Scholar 

  47. Tas AC. Synthesis of biomimetic Ca-hydroxyapatite powders at 37°C in synthetic body fluids. Biomater. 2000;21:1429–38.

    Article  Google Scholar 

  48. Wu HC, Wang TW, Sun JS, Wang WH, Lin FH. A novel biomagnetic nanoparticle based on hydroxyapatite. Nanotechnology. 2007;18:1–9.

    Google Scholar 

  49. Marsich L, Moimas L, Sergo V, Schmid C. Raman spectroscopic study of bioactive silica-based glasses: the role of alkali/alkali earth ratio on the non-bridging oxygen/bridging oxygen (NBO/BO) ratio. Spectroscopy. 2009;23(3–4):227–232.

  50. Pemberton JE, Latifzadeh L, Fletcher JP, Risbud SH. Raman spectroscopy of calcium phosphate glasses with varying CaO modifier concentrations. Chem Mater 1991;3(1):195–200.

  51. Kaur G, Pickrell G, Kimsawatde G, Homa D, Allbee HA, Sriranganathan N. Synthesis, cytotoxicity, and hydroxypatite formation in 27-tris-SBF for sol-gel based CaO–P2O5–SiO2–B2O3–ZnO bioactive glasses. Sci Rep. 2014;4:1–14.

    Article  Google Scholar 

  52. Kaur G, Sharma P, Kumar V, Singh K. Assessment of in vitro bioactivity of SiO2–BaO–ZnO–B2O3–Al2O3 glasses: an optico-analytical approach. Mater Sci Eng,C. 2012;32:1941–7.

    Article  Google Scholar 

  53. Kaur G, Kumar M, Arora A, Pandey OP, Singh K. Influence of Y2O3 on structural and optical properties of SiO2–BaO–ZnO–xB2O3-(10−x)Y2O3 glasses and glass ceramics. J Non Cryst Solids. 2011;357:858–63.

    Article  Google Scholar 

  54. Dion A, Langman M, Hall G, Filiaggi M. Vancomycin release behaviour from amorphous calcium polyphosphate matrices intended for osteomyelitis treatment. Biomater. 2005;26:7276–85.

    Article  Google Scholar 

  55. Domingues ZR, Cortès ME, Gomes TA, Diniz HF, Freitas CS, Gomes JB, Faria AMC, Sinisterra RD. Bioactive glass as a drug delivery system of tetracycline and tetracycline associated with β-cyclodextrin. Biomaterials. 2004;25(2):327–33.

Download references

Acknowledgment

One of the author, GK is thankful to University Grant Commission (UGC) under the letter no.—F.15/2013-2014/PDFWM-2013-2014-GE-PUN-14803 (SA-II) for providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gurbinder Kaur or Om Prakash Pandey.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, S., Thakur, S., Gupta, A. et al. Antibacterial and anticancerous drug loading kinetics for (10-x)CuO-xZnO-20CaO-60SiO2-10P2O5 (2 ≤ x ≤ 8) mesoporous bioactive glasses. J Mater Sci: Mater Med 28, 11 (2017). https://doi.org/10.1007/s10856-016-5827-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5827-x

Keywords

Navigation