Skip to main content

Advertisement

Log in

Synthesis and characterization of antibacterial drug loaded β-tricalcium phosphate powders for bone engineering applications

  • Delivery Systems
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Powders of β-tricalcium phosphate [β-TCP, β-Ca3(PO4)2] and composite powders of β-TCP and polyvinyl alcohol (PVA) were synthesized by using wet precipitation methods. First, the conditions for the preparation of single phase β-TCP have been delineated. In the co-precipitation procedure, calcium nitrate and diammonium hydrogen phosphate were used as calcium and phosphorous precursors, respectively. The pH of the system was varied in the range 7–11 by adding designed amounts of ammonia solution. The filtered cakes were desiccated at 80 °C and subsequently calcined at different temperatures in the range between 700–1100 °C. Later on, rifampicin form II was used to produce drug-loaded β-TCP and PVA/β-TCP powders. All the synthesized materials have been characterized from morphological (by scanning electron microscopy) and structural-chemical (by X-ray diffraction and Fourier transform infrared spectroscopy) point of view. The drug loading capacity of the selected pure β-TCP powder has been assessed. The biological performance (cytocompatibility in fibroblast cell culture and antibacterial efficacy against Escherichia coli and Staphylococcus aureus) has been tested with promising results. Application perspectives of the designed drug-bioceramic-polymer blends are advanced and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 2001. https://doi.org/10.1007/s005860100282.

    Article  Google Scholar 

  2. Gao P, Zhang H, Liu Y, Fan B, Li X, Xiao X, et al. Beta-tricalcium phosphate granules improve osteogenesis in vitro and establish innovative osteo-regenerators for bone tissue engineering in vivo. Sci Rep. 2016;6:1–14. https://doi.org/10.1038/srep23367.

    Article  Google Scholar 

  3. Habraken W, Habibovic P, Epple M, Bohner M. Calcium phosphates in biomedical applications: materials for the future? Mater Today. 2016. https://doi.org/10.1016/j.mattod.2015.10.008.

    Article  CAS  Google Scholar 

  4. Miculescu F, Maidaniuc A, Voicu SI, Thakur VK, Stan GE, Ciocan LT. Progress in hydroxyapatite-starch based sustainable biomaterials for biomedical bone substitution applications. ACS Sustain Chem Eng. 2017. https://doi.org/10.1021/acssuschemeng.7b02314.

    Article  CAS  Google Scholar 

  5. Grigoraviciute-Puroniene I, Tsuru K, Garskaite E, Stankeviciute Z, Beganskiene A, Ishikawa K, et al. A novel wet polymeric precipitation synthesis method for monophasic β-TCP. Adv Powder Technol. 2017;28:2325–31. https://doi.org/10.1016/j.apt.2017.06.014.

    Article  CAS  Google Scholar 

  6. Chen J, Wang Y, Chen X, Ren L, Lai C, He W, et al. A simple sol-gel technique for synthesis of nanostructured hydroxyapatite, tricalcium phosphate and biphasic powders. Mater Lett. 2011;65:1923–6. https://doi.org/10.1016/j.matlet.2011.03.076.

    Article  CAS  Google Scholar 

  7. Mirhadi B, Mehdikhani B, Askari N. Synthesis of nano-sized β-tricalcium phosphate via wet precipitation. Process Appl Ceram. 2011;5:193–8. https://doi.org/10.2298/PAC1104193M.

    Article  CAS  Google Scholar 

  8. Ghosh R, Sarkar R. Synthesis and Characterization of Sintered Beta-Tricalcium Phosphate: A Comparative Study on the Effect of Preparation Route. Mater Sci Eng C. 2016;67:345–52. https://doi.org/10.1016/j.msec.2016.05.029.

    Article  CAS  Google Scholar 

  9. Duta L, Mihailescu N, Popescu AC, Luculescu CR, Mihailescu IN, Çetin G, et al. Comparative physical, chemical and biological assessment of simple and titanium-doped ovine dentine-derived hydroxyapatite coatings fabricated by pulsed laser deposition. Appl Surf Sci. 2017. https://doi.org/10.1016/j.apsusc.2017.04.025.

    Article  CAS  Google Scholar 

  10. Moriarty TF, Kuehl R, Coenye T, Metsemakers W-J, Morgenstern M, Schwarz EM, et al. Orthopaedic device-related infection: current and future interventions for improved prevention and treatment. EFORT Open Rev. 2016. https://doi.org/10.1302/2058-5241.1.000037.

    Article  Google Scholar 

  11. Winkler H. Treatment of chronic orthopaedic infection. EFORT Open Rev. 2017;2:110–6. https://doi.org/10.1302/2058-5241.2.160063.

    Article  Google Scholar 

  12. Popa AC, Fernandes HR, Necsulescu M, Luculescu C, Cioangher M, Dumitru V, et al. Antibacterial efficiency of alkali-free bio-glasses incorporating ZnO and/or SrO as therapeutic agents. Ceram Int. 2019;45:4368–80. https://doi.org/10.1016/j.ceramint.2018.11.112.

    Article  CAS  Google Scholar 

  13. Getzlaf MA, Lewallen EA, Kremers HM, Jones DL, Bonin CA, Dudakovic A, et al. Multi-disciplinary antimicrobial strategies for improving orthopaedic implants to prevent prosthetic joint infections in hip and knee. J Orthop Res. 2016. https://doi.org/10.1002/jor.23068.

    Article  Google Scholar 

  14. Hiremath PS, Saha RN. Oral controlled release formulations of rifampicin. Part II: effect of formulation variables and process parameters on in vitro release. Drug Deliv. 2008;15:159–68. https://doi.org/10.1080/10717540801952498.

    Article  CAS  Google Scholar 

  15. Kissling M, Bergamini N. Rifampicin in free combination with other antimicrobial drugs in non-tb infections: clinical data on 650 patients (a review). Chemotherapy. 1981. https://doi.org/10.1159/000238006.

    Article  CAS  Google Scholar 

  16. Cluzel RA, Lopitaux R, Sirot J, Rampon S. Rifampicin in the treatment of osteoarticular infections due to staphylococci. J Antimicrob Chemother. 1984. https://doi.org/10.1093/jac/13.suppl_C.23.

    Article  Google Scholar 

  17. Spellberg B, Lipsky BA. Systemic antibiotic therapy for chronic osteomyelitis in adults. Clin Infect Dis. 2012. https://doi.org/10.1093/cid/cir842.

    Article  Google Scholar 

  18. Kim BN, Kim ES, Oh MD. Oral antibiotic treatment of staphylococcal bone and joint infections in adults. J Antimicrob Chemother. 2014;69:309–22. https://doi.org/10.1093/jac/dkt374.

    Article  CAS  Google Scholar 

  19. Mohseni M, Gilani K, Mortazavi SA. Preparation and characterization of rifampin loaded mesoporous silica nanoparticles as a potential system for pulmonary drug delivery. Iran J Pharm Res. 2015;14:27–34. https://doi.org/10.22037/ijpr.2015.1616.

    Article  CAS  Google Scholar 

  20. Eliaz N, Metoki N. Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications. Materials. 2017. https://doi.org/10.3390/ma10040334.

    Article  Google Scholar 

  21. McQueen MM, Duckworth AD, Aitken SA, Court-Brown CM. The estimated sensitivity and specificity of compartment pressure monitoring for acute compartment syndrome. J Bone Jt Surg. 2013;95:673–7. https://doi.org/10.2106/JBJS.K.01731.

    Article  Google Scholar 

  22. Baheiraei N, Nourani MR, Mortazavi SMJ, Movahedin M, Eyni H, Bagheri F, et al. Development of a bioactive porous collagen/β-tricalcium phosphate bone graft assisting rapid vascularization for bone tissue engineering applications. J Biomed Mater Res Part A. 2018;106:73–85. https://doi.org/10.1002/jbm.a.36207.

    Article  CAS  Google Scholar 

  23. Zhang J, Liu W, Schnitzler V, Tancret F, Bouler JM. Calcium phosphate cements for bone substitution: chemistry, handling and mechanical properties. Acta Biomaterialia. 2014. https://doi.org/10.1016/j.actbio.2013.11.001.

    Article  Google Scholar 

  24. Lee JH, Chang BS, Jeung UO, Park KW, Kim MS, Lee CK. The first clinical trial of beta-calcium pyrophosphate as a novel bone graft extender in instrumented posterolateral lumbar fusion. Clin. Orthop Surg. 2011. https://doi.org/10.4055/cios.2011.3.3.238.

    Article  Google Scholar 

  25. Ryu HS, Youn HJ, Sun Hong K, Chang BS, Lee CK, Chung SS. An improvement in sintering property of β-tricalcium phosphate by addition of calcium pyrophosphate. Biomaterials. 2002. https://doi.org/10.1016/S0142-9612(01)00201-0.

    Article  CAS  Google Scholar 

  26. Markovic M, Fowler BBO, Tung MS. Preparation and comprehensive characterization of a calcium hydroxyapatite reference material. J Res Natl Inst Stand Technol. 2004. https://doi.org/10.6028/jres.109.042.

    Article  CAS  Google Scholar 

  27. Petrov I, Šoptrajanov B, Fuson N, Lawson JR. Infra-red investigation of dicalcium phosphates. Spectrochim. Acta Part A Mol Spectrosc. 1967. https://doi.org/10.1016/0584-8539(67)80155-7.

    Article  CAS  Google Scholar 

  28. Tortet L, Gavarri JR, Nihoul G, Dianoux AJ. Study of protonic mobility in CaHPO4·2H2O (Brushite) and CaHPO4(Monetite) by infrared spectroscopy and neutron scattering. J Solid State Chem. 1997. https://doi.org/10.1006/jssc.1997.7383.

    Article  CAS  Google Scholar 

  29. Mocanu A-C, Stan GE, Maidaniuc A, Miculescu M, Antoniac IV, Ciocoiu R-C, et al. Naturally-derived biphasic calcium phosphates through increased phosphorus-based reagent amounts for biomedical applications. Materials. 2019;12:381. https://doi.org/10.3390/ma12030381.

    Article  CAS  Google Scholar 

  30. Berzina-Cimdina L, Borodajenko N. Research of calcium phosphates using fourier transform infrared spectroscopy. In: Theophile T (Ed.), Infrared spectroscopy—materials science, engineering and technology. 2012. InTech, Croatia. https://doi.org/10.5772/36942.

    Google Scholar 

  31. Chen KH, Li MJ, Cheng WT, Balic-Zunic T, Lin SY. Identification of monoclinic calcium pyrophosphate dihydrate and hydroxyapatite in human sclera using raman microspectroscopy. Int J Exp Pathol. 2009. https://doi.org/10.1111/j.1365-2613.2008.00614.x.

    Article  CAS  Google Scholar 

  32. Gras P, Teychené S, Rey C, Charvillat C, Biscans B, Sarda S, et al. Crystallisation of a highly metastable hydrated calcium pyrophosphate phase. CrystEngComm. 2013. https://doi.org/10.1039/c2ce26499d.

    Article  CAS  Google Scholar 

  33. Wang CX, Zhou X, Wang M. Influence of sintering temperatures on hardness and Young’s modulus of tricalcium phosphate bioceramic by nanoindentation technique. Mater Charact. 2004;52:301–7. https://doi.org/10.1016/j.matchar.2004.06.007.

    Article  CAS  Google Scholar 

  34. Jillavenkatesa A, Condrate RA. The infrared and raman spectra of β- and α- tricalcium phosphate (Ca3(PO4)2). Spectrosc Lett. 1998. https://doi.org/10.1080/00387019808007439.

    Article  CAS  Google Scholar 

  35. Smitha KT, Nisha N, Maya S, Biswas R, Jayakumar R. Delivery of rifampicin-chitin nanoparticles into the intracellular compartment of polymorphonuclear leukocytes. Int J Biol Macromol. 2015;74:36–43. https://doi.org/10.1016/j.ijbiomac.2014.11.006.

    Article  CAS  Google Scholar 

  36. Jing D, Gu Y, Xia H. Solid-state and solution-mediated polymorphic transformation of rifampicin. Chem Eng Technol. 2018. https://doi.org/10.1002/ceat.201700233.

    Article  CAS  Google Scholar 

  37. Bacchi A, Pelizzi G, Nebuloni M, Ferrari P. Comprehensive study on structure-activity relationships of rifamycins: discussion of molecular and crystal structure and spectroscopic and thermochemical properties of rifamycin O. J Med Chem. 1998. https://doi.org/10.1021/jm970791o.

    Article  CAS  Google Scholar 

  38. Wicher B, Pyta K, Przybylski P, Tykarska E, Gdaniec M. Redetermination of rifampicin penta-hydrate revealing a zwitterionic form of the anti-biotic. Acta Crystallogr Sect C Cryst Struct Commun. 2012. https://doi.org/10.1107/S0108270112015296.

    Article  CAS  Google Scholar 

  39. Henwood SQ, Liebenberg W, Tiedt LR, Lötter AP, De Villiers MM. Characterization of the solubility and dissolution properties of several new rifampicin polymorphs, solvates, and hydrates. Drug Dev Ind Pharm. 2001. https://doi.org/10.1081/DDC-100108364.

    Article  CAS  Google Scholar 

  40. Stan GE, Marcov DA, Popa AC, Husanu MA. Polymer-like and diamond-like carbon coatings prepared By RF-PECVD for biomedical applications. Dig J Nanomater Bios. 2010;5(3):705–18.

  41. Favila A, Gallo M, Glossman-Mitnik D. CHIH-DFT determination of the molecular structure infrared spectra, UV spectra and chemical reactivity of three antitubercular compounds: rifampicin, isoniazid and pyrazinamide. J Mol Model. 2007. https://doi.org/10.1007/s00894-007-0170-2.

    Article  CAS  Google Scholar 

  42. Agrawal S, Ashokraj Y, Bharatam PV, Pillai O, Panchagnula R. Solid-state characterization of rifampicin samples and its biopharmaceutic relevance. Eur J Pharm Sci. 2004. https://doi.org/10.1016/j.ejps.2004.02.011.

    Article  CAS  Google Scholar 

  43. Sofokleous P, Stride E, Edirisinghe M. Preparation, characterization, and release of amoxicillin from electrospun fibrous wound dressing patches. Pharm Res. 2013;30:1926–38. https://doi.org/10.1007/s11095-013-1035-2.

    Article  CAS  Google Scholar 

  44. Metsger DS, Rieger MR, Foreman DW. Mechanical properties of sintered hydroxyapatite and tricalcium phosphate ceramic. J Mater Sci Mater Med. 1999;10:9–17. https://doi.org/10.1023/A:1008883809160.

    Article  CAS  Google Scholar 

  45. Flauder S, Gbureck U, Müller FA. Structure and mechanical properties of β-TCP scaffolds prepared by ice-templating with preset ice front velocities. Acta Biomater. 2014;10:5148–55. https://doi.org/10.1016/j.actbio.2014.08.020.

    Article  CAS  Google Scholar 

  46. Poelstra KA, Barekzi NA, Rediske AM, Felts AG, Slunt JB, Grainger DW. Prophylactic treatment of gram-positive and gram-negative abdominal implant infections using locally delivered polyclonal antibodies. J Biomed Mater Res. 2002. https://doi.org/10.1002/jbm.10069.

    Article  CAS  Google Scholar 

  47. Rasekh M, Ahmad Z, Cross R, Hernández-Gil J, Wilton-Ely JDET, Miller PW. Facile preparation of drug-loaded tristearin encapsulated superparamagnetic iron oxide nanoparticles using coaxial electrospray processing. Mol Pharm. 2017;14:2010–23. https://doi.org/10.1021/acs.molpharmaceut.7b00109.

    Article  CAS  Google Scholar 

  48. Kumar GCM. Functionally graded bio-ceramic reinforced PVA hydrogel composites for knee joint artificial cartilages. AIP Conf. Proc. 2018;1943. https://doi.org/10.1063/1.5029689.

  49. Yao H, Kang J, Li W, Liu J, Xie R, Wang Y, et al. Novel β-TCP/PVA bilayered hydrogels with considerable physical and bio-functional properties for osteochondral repair. Biomed. Mater. 2018;13. https://doi.org/10.1088/1748-605X/aa8541.

    Article  Google Scholar 

  50. Ozkan O, Turkoglu Sasmazel H. Effects of nozzle type atmospheric dry air plasma on L929 fibroblast cells hybrid poly (ε-caprolactone)/chitosan/poly (ε-caprolactone) scaffolds interactions. J Biosci Bioeng. 2016;122:232–9. https://doi.org/10.1016/j.jbiosc.2016.01.004.

    Article  CAS  Google Scholar 

  51. Surucu S, Turkoglu Sasmazel H. DBD atmospheric plasma-modified, electrospun, layer-by-layer polymeric scaffolds for L929 fibroblast cell cultivation. J Biomater Sci Polym Ed. 2016;27:111–32. https://doi.org/10.1080/09205063.2015.1111717.

    Article  CAS  Google Scholar 

  52. Chen SH, Chang Y, Lee KR, Lai JY. A three-dimensional dual-layer nano/microfibrous structure of electrospun chitosan/poly(d,l-Lactide) membrane for the improvement of cytocompatibility. J Memb Sci. 2014;450:224–34. https://doi.org/10.1016/j.memsci.2013.08.007.

    Article  CAS  Google Scholar 

  53. Yuan J, Wang B, Han C, Lu X, Sun W, Wang D, et al. In vitro comparison of three rifampicin loading methods in a reinforced porous β-tricalcium phosphate scaffold. J Mater Sci Mater Med. 2015;26:1–9. https://doi.org/10.1007/s10856-015-5437-z.

    Article  Google Scholar 

  54. Zhao P, Li D, Yang F, Ma Y, Wang T, Duan S, et al. In vitro and in vivo drug release behavior and osteogenic potential of a composite scaffold based on poly(ε-caprolactone)-block-poly(lactic-co-glycolic acid) and β-tricalcium phosphate. J Mater Chem B. 2015;3:6885–96. https://doi.org/10.1039/c5tb00946d.

    Article  CAS  Google Scholar 

  55. Gencer ZA, Odabas S, Sasmazel HT, Piskin E. Macroporous silicone biomaterials with modified surface chemistry: production and characterization. J Bioact Compat Polym. 2012;27:419–28. https://doi.org/10.1177/0883911512455115.

    Article  Google Scholar 

  56. Ozkan O, Turkoglu Sasmazel H. Hybrid polymeric scaffolds prepared by micro and macro approaches. Int J Polym Mater Polym Biomater. 2017;66:853–60. https://doi.org/10.1080/00914037.2016.1278218.

    Article  CAS  Google Scholar 

  57. Kim SJ, Yang DH, Chun HJ, Chae GT, Jang JW, Shim YB. Evaluations of chitosan/poly(D,L-lactic-co-glycolic acid) composite fibrous scaffold for tissue engineering applications. Macromol Res 2013;21:931–9. https://doi.org/10.1007/s13233-013-1110-x.

    Article  CAS  Google Scholar 

  58. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal. 2016. https://doi.org/10.1016/j.jpha.2015.11.005.

    Article  Google Scholar 

  59. Nirmala R, Kalpana D, Navamathavan R, Park M, Kim HY, Park SJ. Antimicrobial activity of electrospun polyurethane nanofibers containing composite materials. Korean J Chem Eng. 2014. https://doi.org/10.1007/s11814-013-0257-7.

    Article  CAS  Google Scholar 

  60. Coe CJ, Doss SA, Tillotson GS, Amyes SGB. Interaction of sub-inhibitory concentrations of ciprofloxacin and rifampicin against staphylococcus aureus. Int J Antimicrob Agents. 1995;5:135–9. https://doi.org/10.1016/0924-8579(95)90674-L.

    Article  CAS  Google Scholar 

  61. Rahal EA, Kazzi N, Kanbar A, Abdelnoor AM, Matar GM. Role of rifampicin in limiting Escherichia coli O157:H7 shiga-like toxin expression and enhancement of survival of infected BALB/c Mice. Int J Antimicrob Agents. 2011;37:135–9. https://doi.org/10.1016/j.ijantimicag.2010.10.009.

    Article  CAS  Google Scholar 

  62. Koshiko S, Sasajima T, Muraki S, Azuma N, Yamazaki K, Chiba K, et al. Limitations in the use of rifampicin-gelatin grafts against virulent organisms. J Vasc Surg. 2002;35:779–85. https://doi.org/10.1067/mva.2002.121850.

    Article  Google Scholar 

  63. Li YQ, Sun XX, Feng JL, Mo HZ. Antibacterial activities and membrane permeability actions of glycinin basic peptide against Escherichia coli. Innov Food Sci Emerg Technol. 2015;31:170–6. https://doi.org/10.1016/j.ifset.2015.07.009.

    Article  Google Scholar 

  64. Hu D, Wang L. Physical and antibacterial properties of polyvinyl alcohol films reinforced with quaternized cellulose. J Appl Polym Sci. 2016;133. https://doi.org/10.1002/app.43552.

  65. Clauss M, Trampuz A, Borens O, Bohner M, Ilchmann T. Biofilm formation on bone grafts and bone graft substitutes: comparison of different materials by a standard in vitro test and microcalorimetry. Acta Biomater. 2010;6:3791–7. https://doi.org/10.1016/j.actbio.2010.03.011.

    Article  CAS  Google Scholar 

  66. Sago T, Mori Y, Takagi H, Iwata H, Murase K, Kawamura Y, et al. Local treatment of dacron patch graft contaminated with staphylococcus aureus with antibiotic-releasing porous apatite ceramic: an experimental study in the rabbit. J Vasc Surg. 2003;37:169–74. https://doi.org/10.1067/mva.2003.105.

    Article  Google Scholar 

  67. Surudžić R, Janković A, Mitrić M, Matić I, Juranić ZD, Živković L, et al. The effect of graphene loading on mechanical, thermal and biological properties of poly(Vinyl alcohol)/graphene nanocomposites. J Ind Eng Chem. 2016;34:250–7. https://doi.org/10.1016/j.jiec.2015.11.016.

    Article  Google Scholar 

  68. Abdul J, Salman S, Kadhemy MFH. Effect of PVA, PVA/biosurfactant on some pathogenic bacteria in glass and plastic plates. Int J Curr Microbiol App Sci. 2014;3:301–9.

  69. Zhang Z, Wu Y, Wang Z, Zhang X, Zhao Y, Sun L. Electrospinning of Ag nanowires/polyvinyl alcohol hybrid nanofibers for their antibacterial properties. Mater Sci Eng C. 2017;78:706–14. https://doi.org/10.1016/j.msec.2017.04.138.

    Article  CAS  Google Scholar 

  70. Zhang Z, Wu Y, Wang Z, Zou X, Zhao Y, Sun L. Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities. Mater Sci Eng C. 2016;69:462–9. https://doi.org/10.1016/j.msec.2016.07.015.

    Article  CAS  Google Scholar 

  71. Roy M, Bandyopadhyay A, Bose S. In vitro antimicrobial and biological properties of laser assisted tricalcium phosphate coating on titanium for load bearing implant. Mater Sci Eng C. 2009. https://doi.org/10.1016/j.msec.2009.03.009.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G.E.S. and I.M.B acknowledge the support of Romanian Ministry of Research and Innovation, CCCDI-UEFISCDI, in the framework of project PN-III-P1-1.2-PCCDI-2017-0062 (contract no. 58)/component project no. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oguzhan Gunduz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Topsakal, A., Ekren, N., Kilic, O. et al. Synthesis and characterization of antibacterial drug loaded β-tricalcium phosphate powders for bone engineering applications. J Mater Sci: Mater Med 31, 16 (2020). https://doi.org/10.1007/s10856-019-6356-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-019-6356-1

Navigation