Skip to main content
Log in

Dynamics of lysozyme and its hydration water under an electric field

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The effects of a static electric field on the dynamics of lysozyme and its hydration water are investigated by means of incoherent quasi-elastic neutron scattering (QENS). Measurements were performed on lysozyme samples, hydrated respectively with heavy water (D 2O) to capture the protein dynamics and with light water (H 2O), to probe the dynamics of the hydration shell, in the temperature range from 210 < T < 260 K. The hydration fraction in both cases was about ∼ 0.38 gram of water per gram of dry protein. The field strengths investigated were respectively 0 kV/mm and 2 kV/mm ( ∼2 × 10 6 V/m) for the protein hydrated with D 2O and 0 kV and 1 kV/mm for the H 2O-hydrated counterpart. While the overall internal protons dynamics of the protein appears to be unaffected by the application of an electric field up to 2 kV/mm, likely due to the stronger intra-molecular interactions, there is also no appreciable quantitative enhancement of the diffusive dynamics of the hydration water, as would be anticipated based on our recent observations in water confined in silica pores under field values of 2.5 kV/mm. This may be due to the difference in surface interactions between water and the two adsorption hosts (silica and protein), or to the existence of a critical threshold field value E c ∼2–3 kV/mm for increased molecular diffusion, for which electrical breakdown is a limitation for our sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Roth, C., Lenhof, A.: Quantitative modelling of protein adsorption. In: Malmsten, M (eds.) Biopolymers at Interfaces, Surfactant Science Series, vol. 75, pp. 89–118. Marcel Dekker, New-York (1998)

    Google Scholar 

  2. Talasaz, A.A.H., Nemat-Gorgani, M., Liu, Y., Stahl, P., Dutton, R.W., Ronaghi, M., Davis, R.W.: Prediction of protein orientation upon immobilization on biological and nonbiological surfaces. Proc. Nat. Acad. Sci. U.S.A. 103(40), 14,773 (2006)

    Article  Google Scholar 

  3. Subrahmanyam, S., Piletsky, S.A., Turner, A.P.F.: Application of natural receptors in sensors and assays. Anal. Chem. 74(16), 3942–3951 (2002)

    Article  Google Scholar 

  4. Ojeda-May, P., Garcia, M.E.: Electric field-driven disruption of a native β-sheet protein conformation and generation of a helix-structure. Biophys. J. 99(2), 595–599 (2010)

    Article  ADS  Google Scholar 

  5. Lange, A., Gattin, Z., Van Melckebeke, H., Wasmer, C., Soragni, A., van Gunsteren, W.F., Meier, B.H.: A combined solid-state nmr and md characterization of the stability and dynamics of the het-s(218–289) prion in its amyloid conformation. Chem. Bio. Chem. 10, 1657–1665 (2009)

    Article  Google Scholar 

  6. Teixeira, J., Bellissent-Funel, M.C., Chen, S.H., Dianoux, A.J.: Experimental-determination of the nature of diffusive motions of water-molecules. Phys. Rev. A 30, 1913 (1985)

    Article  ADS  Google Scholar 

  7. Xu, D., Phillips, J.C., Schulten, K.: Protein response to external electric fields: relaxation, hysteresis, and echo. J. Phys. Chem. 100, 12,108–12,112 (1996)

    Article  Google Scholar 

  8. Taleb, M., Didierjean, C., Jelsch, C., Mangeot, J., Aubry, A.: Equilibrium kinetics of lysozyme crystallization under an external electric field. J. Crys. Growth 232, 250–255 (2001)

    Article  ADS  Google Scholar 

  9. Nanev, C.N., Penkova, A.: Nucleation of lysozyme crystals under external electric and ultrasonic fields. J. Crys. Growth 232, 285–293 (2001)

    Article  ADS  Google Scholar 

  10. Pompa, P.P., Bramanti, A., Maruccio, G., Cingolani, R., Rienzo, F.D., Corni, S., Felice, R.D., Rinaldi, R.: Retention of nativelike conformation by proteins embedded in high external electric fields. J. Chem. Phys. 122(181), 102 (2005)

    Google Scholar 

  11. Marklund, E.G., Larsson, D.S.D., van der Spoel, D., Patriksson, A., Caleman, C.: Structural stability of electrosprayed proteins: temperature and hydration effects. Phys. Chem. Chem. Phys. 11, 8069–8078 (2009)

    Article  Google Scholar 

  12. Abrikossov, A.: Computer simulations: orientation of Lysozyme in vacuum under the influence of an electric field. Student Thesis, Uppsala Universitet (2011)

  13. Sun, D.P., Liao, D.I., Remington, S.J.: Electrostatic fields in the active sites of lysozymes. Proc. Nat. Acad. Sci. U.S.A. 86(14), 5361–5365 (1989)

    Article  ADS  Google Scholar 

  14. Budi, A., Legge, F.S., Treutlein, H., Yarovsky, I.: Effect of frequency on insulin response to electric field stress. J. Phys. Chem. B 111(20), 5748–5756 (2007)

    Article  Google Scholar 

  15. Varga, B.: Study of solvent-protein coupling effects by neutron scattering. J. Bio. Phys. 36, 207 (2010)

    Article  Google Scholar 

  16. Roh, J., Curtis, J., Azzam, S., Novikov, V., Peral, I., Chowdhuri, Z., Gregory, R., Sokolov, A.: Influence of hydration on the dynamics of lysozyme. Biophys. J. 91(7), 2573–2588 (2006)

    Article  ADS  Google Scholar 

  17. Bon, C., Dianoux, A., Ferrand, M., Lehmann, M.: A model for water motion in crystals of lysozyme based on an incoherent quasielastic neutron-scattering study. Biophys. J. 83(3), 1578–1588 (2002)

    Article  ADS  Google Scholar 

  18. Diallo, S.O., Mamontov, E., Wada, N., Inagaki, S., Fukushima, Y.: Enhanced translational difusion of confined water under electric field. Phys. Rev. E 86(6), 021506 (2012)

    Article  ADS  Google Scholar 

  19. Vegiri, A.: Translational dynamics of a cold water cluster in the presence of an external uniform electric field. J. Chem. Phys. 116, 8786 (2002)

    Article  ADS  Google Scholar 

  20. Mamontov, E., O’Neill, H., Zhang, Q.: Mean-squared atomic displacements in hydrated lysozyme, native and denatured. J. Biol. Phys. 36(3) (2010)

  21. Mamontov, E., Herwig, K.: A time-of-flight backscattering spectrometer at the spallation neutron source, basis. Rev. Sci. Inst. 82(10), 085109 (2011)

    Article  ADS  Google Scholar 

  22. Orecchini, A., Paciaroni, A., De Francesco, A., Sani, L., Marconi, M., Laloni, A., Guarini, E., Formisano, F., Petrillo, C., Sacchetti, F.: Brillouin spectroscopy of protein hydration water: new experimental potentialities opened up by the thermal neutron spectrometer brisp. Meas. Sci. Tech. 19(3), 034026 (2008)

    Article  Google Scholar 

  23. Orecchini, A., Paciaroni, A., De Francesco, A., Petrillo, C., Sacchetti, F.: Collective dynamics of protein hydration water by brillouin neutron spectroscopy. J. Am. Chem. Soc. 131(13), 4664 (2009)

    Article  Google Scholar 

  24. Qvist, J., Schober, H., Halle, B.: Structural dynamics of supercooled water from quasielastic neutron scattering and molecular simulations. J. Chem. Phys. 134(20), 144508 (2011)

    Article  ADS  Google Scholar 

  25. Matyushov, D.V.: Dipolar response of hydrated proteins. J. Chem. Phys. 136(8), 085102 (2012)

    Article  ADS  Google Scholar 

  26. Liu, L., Chen, S.H., Faraone, A., Yen, C., Mou, C.Y.: Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water. Phys. Rev. Lett. 95(4), 117802 (2005)

    Article  ADS  Google Scholar 

  27. Mamontov, E.: Observation of fragile-to-strong liquid transition in surface water in CeO2. J. Chem. Phys. 123(4), 171101 (2005)

    Article  ADS  Google Scholar 

  28. Liu, L., Chen, S-H, Faraone, A., Yen, C.-W., Mou, C.-Y., Kolesnikov, A.I., Mamontov, E., Leao, J.: Quasielastic and inelastic neutron scattering investigation of fragile-to-strong crossover in deeply super-cooled water confined in nanoporous silica matrices. J. Phys. Condens. Mat. 18, S2261–S2284 (2006)

    Article  ADS  Google Scholar 

  29. Doster, W., Busch, S., Gaspar, A.M., Appavou, M.-S., Wuttke, J., Scheer, H.: Dynamical transition of protein-hydration water. Phys. Rev. Lett. 104(4), 098101 (2010)

    Article  ADS  Google Scholar 

  30. Hong, L., Smolin, N., Lindner, B., Sokolov, A.P., Smith, J.C.: Three classes of motion in the dynamic neutron-scattering susceptibility of a globular protein. Phys. Rev. Lett. 107(4), 148102 (2011)

    Article  ADS  Google Scholar 

  31. Khodadadi, S., Curtis, J.E., Sokolov, A.P.: Nanosecond relaxation dynamics of hydrated proteins: water versus protein contributions. J. Phys. Chem. B 115(19), 6222–6226 (2011)

    Article  Google Scholar 

  32. Azuah, R.T., Kneller, L.R., Qiu, Y., Tregenna-Piggott, P.L.W., Brown, C.M., Copley, J.R.D., Dimeo, R.M.J. Res. Natl. Inst. Stan. Technol. 114, 341 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the use of the DAVE software in part of the data analysis [32]. We thank C. Stanley at ORNL for stimulating discussions. It is also a pleasure to acknowledge R. Goyette, R. Mills, D. Maierhafer, R. Moody and M. Loguillo at SNS for valuable technical support. PF acknowledges the GEM fellowship program at UTK. HON and QZ acknowledge the support of the Center for Structural Molecular Biology at ORNL supported by the U.S. DOE, Office of Science, Office of Biological and Environmental Research Project ERKP291. Work at ORNL and SNS is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Diallo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Favi, P.M., Zhang, Q., O’Neill, H. et al. Dynamics of lysozyme and its hydration water under an electric field. J Biol Phys 40, 167–178 (2014). https://doi.org/10.1007/s10867-014-9343-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-014-9343-2

Keywords

Navigation