Skip to main content

Advertisement

Log in

A dynamical model of combination therapy applied to glioma

  • Research
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Glioma is a human brain tumor that is very difficult to treat at an advanced stage. Studies of glioma biomarkers have shown that some markers are released into the bloodstream, so data from these markers indicate a decrease in the concentration of blood glucose and serum glucose in patients with glioma; these suggest an association between glucose and glioma. This decrease mechanism in glucose concentration can be described by the coupled ordinary differential equations of the early-stage glioma growth and interactions between glioma cells, immune cells, and glucose concentration. In this paper, we propose developing a new mathematical model to explain how glioma cells evolve and survive combination therapy between chemotherapy and oncolytic virotherapy, as an alternative to glioma treatment. In this study, three therapies were applied for analysis, that is, (1) chemotherapy, (2) virotherapy, and (3) a combination of chemotherapy and virotherapy. Virotherapy uses specialist viruses that only attack tumor cells. Based on the simulation results of the therapy carried out, we conclude that combination therapy can reduce the glioma cells significantly compared to the other two therapies. The simulation results of this combination therapy can be an alternative to glioma therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Code availability

Not applicable; formulas can be coded using any programming platform.

References

  1. Aldape, K., Brindle, K.M., Chesler, L., Chopra, R., Gajjar, A., Gilbert, M.R., Gottardo, N., Gutmann, D.H., Hargrave, D., Holland, E.C., Jones, D.T.W., Joyce, J.A., Kearns, P., Kieran, M.W., Mellinghoff, I.K., Merchant, M., Pfister, S.M., Pollard, S.M., Ramaswamy, V., Rich, J.N., Robinson, G.W., Rowitch, D.H., Sampson, J.H., Taylor, M.D., Workman, P., Gilbertson, R.J.: Challenges to curing primary brain tumors. Nat. Rev. Clin. Oncol. 16(8), 509–520 (2019)

    Article  Google Scholar 

  2. Alfonso, J.C.L., Talkenberger, K., Seifert, M., Klink, B., Hawkins-Daarud, A., Swanson, K.R., Hatzikirou, H., Deutsch, A.: The biology and mathematical modeling of glioma invasion: a review. J. R. Soc. Interface 14, 20170490 (2017)

    Article  Google Scholar 

  3. Lenting, K., Verhaak, R., Ter Laan, M., Wesseling, P., Leenders, W.: Glioma: experimental models and reality. Acta Neuropathol. 133(2), 263–282 (2017)

    Article  Google Scholar 

  4. Hatzikirou, H., Deutsch, A., Schaller, C., Simon, M., Swanson, K.: Mathematical modeling of glioblastoma tumour development: a review. Math. Models Methods Appl. Sci. 15(11), 1779–1794 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Sturrock, M., Hao, W., Schwartzbaum, J., Rempala, G.A.: A mathematical model of pre-diagnostic glioma growth. J. Theor. Biol. 380, 299–308 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Ayala-Hernandez, L.E., Gallegos, A., Macias-Diaz, J.E., Miranda-Beltran, M.L., Vargas-Rodriguez, H.: A mathematical model for the pre-diagnostic of glioma growth based on blood glucose levels. J. Math. Chem. 56(3), 687–699 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wodarz, D.: Viruses as antitumor weapons. Cancer Res. 61(8), 3501–3507 (2001)

    Google Scholar 

  8. Wodarz, D.: Gene therapy for killing p53-negative cancer cells: use of replicating versus nonreplicating agents. Hum. Gene Ther. 14, 153–159 (2003)

    Article  Google Scholar 

  9. Friedman, A., Tian, J.P., Fulci, G., Chiocca, E.A., Wang, J.: Glioma virotherapy: effects of innate immune suppression and increased viral replication capacity. Cancer Res. 66(4), 2314–2319 (2006)

    Article  Google Scholar 

  10. Vasiliu, D., Tian, J.P.: Periodic solutions of a model for tumor virotherapy. Discrete Contin. Dyn. Syst. S 4(6), 1587–1597 (2011)

  11. Iarosz, K.C., Borges, F.S., Batista, A.M., Baptista, M.S., Siqueira, R.A., Viana, R.L., Lopes, S.R.: Mathematical model of brain tumour with glia-neuron interactions and chemotherapy treatment. J. Theor. Biol. 368, 113–121 (2015)

    Article  MATH  ADS  Google Scholar 

  12. Nguyen, A., Ho, L., Wan, Y.: Chemotherapy and oncolytic virotherapy: advanced tactics in the war against cancer. Front. Oncol. 4, 145 (2014)

    Article  Google Scholar 

  13. De Pillis, L.G., Gu, W., Radunskaya, A.E.: Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations. J. Theor. Biol. 238(4), 841–862 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. Urenda-Cázares, E., Gallegos, A., Macías-Díaz, J.E.: A mathematical model that combines chemotherapy and oncolytic virotherapy as an alternative treatment against a glioma. J. Math. Chem. 58, 544–554 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. De Pillis, L.G., Gu, W., Fister, K.R., Head, T., Maples, K., Murugan, A., Neal, T., Yoshida, K.: Chemotherapy for tumors: an analysis of the dynamics and a study of quadratic and linear optimal controls. Math. Biosci. 209(1), 292–315 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Quiroz, G., Femat, R.: On hyperglycemic glucose basal levels in type 1 diabetes mellitus from dynamic analysis. Math. Biosci. 210(2), 554–575 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Foreman, P.M., Friedman, G.K., Cassady, K.A., Markert, J.M.: Oncolytic virotherapy for the treatment of malignant glioma. Neurotherapeutics 14(2), 333–344 (2017)

    Article  Google Scholar 

  18. Clarke, M.F., Dick, J.E., Dirks, P.B., Eaves, C.J., Jamieson, C.H., Jones, D.L., Visvader, J., Weissman, I.L., Wahl, G.M.: Cancer stem cells-perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 66(19), 9339–9344 (2006)

    Article  Google Scholar 

  19. Campbell, L.L., Polyak, K.: Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle 6(19), 2332–2338 (2007)

    Article  Google Scholar 

  20. Kirn, D.: Replication-selective oncolytic adenoviruses: virotherapy at genetic targets in cancer. Oncogene 19, 6660–6669 (2000)

    Article  Google Scholar 

  21. Dean, M., Fojo, T., Bates, S.: Tumor stem cells and drug resistance. Nat. Rev. Cancer 5(4), 275–284 (2005)

    Article  Google Scholar 

  22. Wennier, S.T., Liu, J., McFadden, G.: Bugs and drugs: oncolytic virotherapy in combination with chemotherapy. Curr. Pharm. Biotechnol. 13(9), 1817–1833 (2012)

    Article  Google Scholar 

  23. Zitvogel, L., Apetoh, L., Ghiringhelli, F., Kroemer, G.: Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 8(1), 59–73 (2008)

    Article  Google Scholar 

  24. Woroniecka, K.I., Rhodin, K.E., Chongsathidkiet, P., Keith, K.A., Fecci, P.E.: T-cell dysfunction in glioblastoma: applying a new framework. Clin. Cancer Res. 24(16), 3792–3802 (2018)

    Article  Google Scholar 

  25. Pombo Antunes, A.R., Scheyltjens, I., Duerinck, J., Neyns, B., Movahedi, K., Van Ginderachter, J.A.: Understanding the glioblastoma immune microenvironment as basis for the development of new immunotherapeutic strategies. eLife 9, e52176 (2020)

    Article  Google Scholar 

  26. Grabowski, M.M., Sankey, E.W., Ryan, K.J., Chongsathidkiet, P., Lorrey, S.J., Wilkinson, D.S., Fecci, P.E.: Immune suppression in gliomas. J. Neurooncol. 151(1), 3–12 (2021)

    Article  Google Scholar 

  27. Jiang, H., Gomez-Manzano, C., Aoki, H., Alonso, M.M., Kondo, S., McCormick, F., Xu, J., Kondo, Y., Bekele, B.N., Colman, H., Lang, F.F., Fueyo, J.: Examination of the therapeutic potential of Delta-24-RGD in brain tumor stem cells: role of autophagic cell death. J. Natl. Cancer Inst. 99(18), 1410–1414 (2007)

    Article  Google Scholar 

  28. Zhu, G., Su, W., Jin, G., Xu, F., Hao, S., Guan, F., Jia, W., Liu, F.: Glioma stem cells targeted by oncolytic virus carrying endostatin-angiostatin fusion gene and the expression of its exogenous gene in vitro. Brain Res. 1390, 59–69 (2011)

    Article  Google Scholar 

  29. Chaurasiya, S., Chen, N.G., Warner, S.G.: Oncolytic virotherapy versus cancer stem cells: a review of approaches and mechanisms. Cancers 10(4), 124 (2018)

    Article  Google Scholar 

  30. Roth, J.C., Cassady, K.A., Cody, J.J., Parker, J.N., Price, K.H., Coleman, J.M., Peggins, J.O., Noker, P.E., Powers, N.W., Grimes, S.D., Carroll, S.L., Gillespie, G.Y., Whitley, R.J., Markert, J.M.: Evaluation of the safety and biodistribution of M032, an attenuated herpes simplex virus type 1 expressing hIL-12, after intracerebral administration to Aotus nonhuman primates. Hum. Gene Ther. Clin. Dev. 25(1), 16–27 (2014)

    Article  Google Scholar 

  31. Geletneky, K., Hajda, J., Angelova, A.L., Leuchs, B., Capper, D., Bartsch, A.J., Neumann, J.O., Schöning, T., Hüsing, J., Beelte, B., Kiprianova, I., Roscher, M., Bhat, R., von Deimling, A., Brück, W., Just, A., Frehtman, V., Löbhard, S., Terletskaia-Ladwig, E., Fry, J., Jochims, K., Daniel, V., Krebs, O., Dahm, M., Huber, B., Unterberg, A., Rommelaere, J.: Oncolytic H-1 parvovirus shows safety and signs of immunogenic activity in a first phase I/IIa glioblastoma trial. Mol. Ther. 25(12), 2620–2634 (2017)

    Article  Google Scholar 

  32. Fadaka, A., Ajiboye, B., Ojo, O., Adewale, O., Olayide, I., Emuowhochere, R.: Biology of glucose metabolization in cancer cells. J. Oncol. Sci. 3(2), 45–51 (2017)

    Article  Google Scholar 

  33. Ratajczyk, E., Ledzewicz, U., Leszczynski, M., Friedman, A.: The role of TNF-α inhibitor in glioma virotherapy: a mathematical model. Math. Biosci. Eng. 14(1), 305–319 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Bai, Y., Hui, P., Du, X., Su, X.: Updates to the antitumor mechanism of oncolytic virus. Thorac. Cancer. 10(5), 1031–1035 (2019)

    Article  Google Scholar 

  35. Russell, S.J., Federspiel, M.J., Peng, K.W., Tong, C., Dingli, D., Morice, W.G., Lowe, V., O’Connor, M.K., Kyle, R.A., Leung, N., Buadi, F.K., Rajkumar, S.V., Gertz, M.A., Lacy, M.Q., Dispenzieri, A.: Remission of disseminated cancer after systemic oncolytic virotherapy. Mayo Clin. Proc. 89(7), 926–933 (2014)

    Article  Google Scholar 

  36. Russell, S.J.: For the success of oncolytic viruses: single cycle cures or repeat treatments? (one cycle should be enough). Mol. Ther. 26(8), 1876–1880 (2018)

    Article  Google Scholar 

  37. Boldogh, I., Albrecht, T., Porter, D.D.: Persistent viral infection. In: Baron, S. (ed.) Medical Microbilogy. 4th ed. Galveston (TX): University of Texas Medical Branch at Galveston (1996)

  38. Kane, M., Golovkina, T.: Common threads in persistent viral infections. J. Virol. 84(9), 4116–4123 (2010)

    Article  Google Scholar 

  39. Giese, A., Loo, M.A., Haskett, D., Coon, S.W., Berens, M.: Dichotomy of astrocytoma migration and proliferation. Int. J. Cancer 67(2), 275–282 (1996)

    Article  Google Scholar 

  40. Swanson, K.R.: Quantifying glioma cell growth and invasion in vitro. Math. Comput. Model. 47(5–6), 638–648 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Matzavinos, A., Chaplain, M.A.J., Kuznetsov, V.A.: Mathematical modelling of the spatio-temporal response of cytotoxic T-lymphocytes to a solid tumour. Math. Med. Biol. 21(1), 1–34 (2004)

    Article  MATH  Google Scholar 

  42. Tanaka, M.L., Debinski, W., Puri, I.K.: Hybrid mathematical model of glioma progression. Cell Prolif. 42(5), 637–646 (2009)

    Article  Google Scholar 

  43. Man, C.D., Rizza, R., Cobelli, C.: Mixed meal simulation model of glucose-insulin system. Conf. Proc. IEEE Med. Biol. Soc. 2006, 307–310 (2006)

  44. Cheema, T.A., Kanai, R., Kim, G.W., Wakimoto, H., Passer, B., Rabkin, S.D., Martuza, R.L.: Enhanced antitumor efficacy of low-dose etoposide with oncolytic herpes simplex virus in human glioblastoma stem cell xenografts. Clin. Cancer Res. 17(23), 7383–7393 (2011)

    Article  Google Scholar 

  45. López, Á.G., Seoane, J.M., Sanjuán, M.A.F.: A validated mathematical model of tumor growth including tumor–host interaction, cell-mediated immune response and chemotherapy. Bull. Math. Biol. 76(11), 2884–2906 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Unni, P., Seshaiyer, P.: Mathematical modeling, analysis, and simulation of tumor dynamics with drug interventions. Comput. Math. Methods Med. 2019, 1–13 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. Fulci, G., Breymann, L., Gianni, D., Kurozomi, K., Rhee, S.S., Yu, J., Kaur, B., Louis, D.N., Weissleder, R., Caligiuri, M.A., Chiocca, E.A.: Cyclophosphamide enhances glioma virotherapy by inhibiting innate immune responses. Proc. Natl. Acad. Sci. U.S.A. 103(34), 12873–12878 (2006)

    Article  ADS  Google Scholar 

  48. Zeng, J., Li, X., Sander, M., Zhang, H., Yan, G., Lin, Y.: Oncolytic viro-immunotherapy: an emerging option in the treatment of gliomas. Front Immunol. 12, 721830 (2021)

    Article  Google Scholar 

  49. Rius-Rocabert, S., García-Romero, N., García, A., Ayuso-Sacido, A., Nistal-Villan, E.: Oncolytic virotherapy in glioma tumors. Int. J. Mol. Sci. 21(20), 7604, 1–30 (2020)

  50. Wollmann, G., Ozduman, K., van den Pol, A.N.: Oncolytic virus therapy for glioblastoma multiforme: concepts and candidates. Cancer J. 18(1), 69–81 (2012)

    Article  Google Scholar 

Download references

Funding

This study was supported by grants from the Directorate of Research and Community Service, Directorate General of Research and Development Strengthening, Ministry of Research, Technology and Higher Education, Indonesia by the Letter of Agreement for the Implementation of Research Programs Number: 2018/IT3.L1/PN/2021 dated 15 March 2021.

Author information

Authors and Affiliations

Authors

Contributions

H.H., S.T.W., A.A.S., and A.K. wrote the manuscript; H.H. and A.K. work the research; H.H., S.T.W., A.A.S., and A.K. designed the research.

Corresponding authors

Correspondence to Handoko Handoko or Agus Kartono.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Handoko, H., Wahyudi, S.T., Setyawan, A.A. et al. A dynamical model of combination therapy applied to glioma. J Biol Phys 48, 439–459 (2022). https://doi.org/10.1007/s10867-022-09618-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-022-09618-8

Keywords

Navigation