Skip to main content
Log in

Synthesis and X-ray Crystal Structure of 2 and 4-Trifluoromethyl Substituted Phenyl Semicarbazone and Thiosemicarbazone

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

NMR and single crystal X-ray structure data for four structurally similar semicarbazones and thiosemicarbazones were compared. In solution, proton NMR showed considerable variation in their chemical shift values especially for the NH2 protons. In the case of the semicarbazones this peak appeared as a broad singlet with an integration ratio of two while for the thiosemicarbazones the amino group showed two distinct singlets with marked chemical shift differences. This is attributed to the differences in the canonical forms of the thiosemicarbazone amino group and the semicarbazone analogue. Additionally, we provide evidence that the 2-trifluoromethyl phenyl substituted semicarbazone (2) formed an intermolecular hydrogen bond with one of the hydrogens of the NH2 group while this was totally absent in the thiosemicarbazone. We explain this by the restricted rotation of the CN bond in the thiosemicarbazone due to its double bond character compared to the less restricted rotation in semicarbazone compound.

Graphical Abstract

NMR and single crystal X-ray structure data for four structurally similar semicarbazones and thiosemicarbazones were compared for their hydrogen bonding characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Klayman DL, Scovill JP, Bartosevich JF, Mason CJ (1979) J Med Chem 22:1367–1373

    Article  CAS  Google Scholar 

  2. Easmon J, Heinisch G, Holzer W, Rosenwirth B (1992) J Med Chem 35:3288–3296

    Article  CAS  Google Scholar 

  3. Kalinowski DS, Yu Y, Sharpe PC, Islam M, Liao Y-T, Lovejoy DB, Kumar N, Bernhardt PV, Richardson DR (2007) J Med Chem 50:3716–3729

    Article  CAS  Google Scholar 

  4. Richardson DR, Sharpe PC, Lovejoy DB, Senaratne D, Kalinowski DS, Islam M, Bernhardt PV (2006) J Med Chem 49:6510–6521

    Article  CAS  Google Scholar 

  5. Shipman C Jr, Smith SH, Drach JC, Klayman DL (1981) Antimicrob Agents Chemother 19:682

    Article  CAS  Google Scholar 

  6. Aouad F, Florence A, Zhang Y, Collins F, Henry C, Ward RJ, Crichton RR (2002) Inorg Chim Acta 339:470–480

    Article  CAS  Google Scholar 

  7. Chaston TB, Lovejoy DB, Watts RN, Richardson DR (2003) Clin Cancer Res 9:402–414

    CAS  Google Scholar 

  8. Chaston TB, Watts RN, Yuan J, Richardson DR (2004) Clin Cancer Res 10:7365–7374

    Article  CAS  Google Scholar 

  9. Le NT, Richardson DR (2004) Blood 104:2967–2975

    Article  CAS  Google Scholar 

  10. Nurtjahja-Tjendraputra E, Fu D, Phang JM, Richardson DR (2007) Blood 109:4045–4054

    Article  CAS  Google Scholar 

  11. Richardson DR (2005) Curr Med Chem 12:2711–2729

    Article  CAS  Google Scholar 

  12. Suvarapu LN, Somala AR, Koduru JR, Baek SO, Ammireddy VR (2012) Asian J Chem 24:1889

    CAS  Google Scholar 

  13. Yuan J, Lovejoy DB, Richardson DR (2004) Blood 104:1450–1458

    Article  CAS  Google Scholar 

  14. Kalinowski DS, Quach P, Richardson DR (2009) Future Med Chem 1:1143–1151

    Article  CAS  Google Scholar 

  15. Lobana TS, Sharma R, Bawa G, Khanna S (2009) Coord Chem Rev 253:977–1055

    Article  CAS  Google Scholar 

  16. Dearling JL, Blower PJ (1998) Chem Commun 2531–2532

  17. Donnelly PS (2011) J Chem Soc Dalton Trans 40:999–1010

    Article  CAS  Google Scholar 

  18. Fujibayashi Y, Taniuchi H, Yonekura Y, Ohtani H (1997) J Nucl Med 38:1155

    CAS  Google Scholar 

  19. Green MA, Mathias CJ, Willis LR, Handa RK, Lacy JL, Miller MA, Hutchins GD (2007) Nucl Med Biol 34:247–255

    Article  CAS  Google Scholar 

  20. Oh M, Tanaka T, Kobayashi M, Furukawa T, Mori T, Kudo T, Fujieda S, Fujibayashi Y (2009) Nucl Med Biol 36:419–426

    Article  CAS  Google Scholar 

  21. Vāvere AL, Lewis JS (2008) Nucl Med Biol 35:273–279

    Article  Google Scholar 

  22. Zhou J, Liu X, Chen Z-F, Liang H (2006) Chin J Synth Chem 14:471–475

    CAS  Google Scholar 

  23. Chumakov YM, Tsapkov V, Antosyak BY, Bairac N, Simonov YA, Bocelli G, Pahontu E, Gulea A (2009) Cryst Rep 54:455–463

    Article  CAS  Google Scholar 

  24. Garbelini ER, Maria da Graça M, Back DF, Evans DJ, Müller-Santos M, Ribeiro RR, Lang ES, Nunes FS (2012) J Mol Struct 1008:35–41

    Article  CAS  Google Scholar 

  25. Garbelini ER, Ribeiro RR, Hörner M, Locatelli A, Nunes FS (2011) Spectrochim Acta Pt A 78:1337–1341

    Article  Google Scholar 

  26. Gulya A, Tsapkov V, Chumakov YM, Roshu T (2006) Russ J Gen Chem 76:1100–1105

    Article  Google Scholar 

  27. Qing Y, Xiaoge B, Ligang Z, Hedong B, Hong L (2006) Chem J Inter 8:49

    Google Scholar 

  28. Shaabani B, Khandar AA, Dusek M, Pojarova M, Mahmoudi F, Feher A, Kajňaková M (2013) J Coord Chem 66:748–762

    Article  CAS  Google Scholar 

  29. Basu S, Acharyya R, Basuli F, Peng S-M, Lee G-H, Mostafa G, Bhattacharya S (2010) Inorg Chim Acta 363:2848–2856

    Article  CAS  Google Scholar 

  30. Tian Y-P, Wu J-Y, Xie F-X, Shanmuga Sundara Raj S, Yang P, Fun H-K (1999) Acta Crystallogr Sect C 55:1641–1644

    Article  Google Scholar 

  31. Venkatachalam T, Pierens GK, Reutens DC (2014) Magn Reson Chem 52:98–105

    Article  CAS  Google Scholar 

  32. Rigaku Oxford Diffraction, Version 171.38.43

  33. Sheldrick GM (2008) Acta Crystallogr Sect A 64:112–122

    Article  CAS  Google Scholar 

  34. Farrugia LJ (2012) J Appl Crystallogr 45:849–854

    Article  CAS  Google Scholar 

  35. Spek A (2009) Acta Cryst D 65:148–155

    Article  CAS  Google Scholar 

  36. Banks RE, Smart BE, Tatlow J (2013) Organofluorine chemistry: principles and commercial applications. Springer, Berlin

    Google Scholar 

  37. Müller K, Faeh C, Diederich F (2007) Science 317:1881–1886

    Article  Google Scholar 

  38. Ojima I (2009) Fluorine in medicinal chemistry and chemical biology. Wiley, Chichester

    Book  Google Scholar 

  39. Attia MI, Ghabbour HA, El-Azzouny AA, Al-Deeb OA, Almutairi MS, Fun H-K (2013) J Chem 2013

  40. Bernhardt PV, Caldwell LM, Lovejoy DB, Richardson DR (2003) Acta Crystallogr Sect C 59:o629–o633

    Article  Google Scholar 

Download references

Acknowledgements

This research work is partially supported by a Linkage Grant (LP130100703 for DCR) from Australian Research Council Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Venkatachalam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 349 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatachalam, T.K., Bernhardt, P.V., Pierens, G.K. et al. Synthesis and X-ray Crystal Structure of 2 and 4-Trifluoromethyl Substituted Phenyl Semicarbazone and Thiosemicarbazone. J Chem Crystallogr 47, 30–39 (2017). https://doi.org/10.1007/s10870-017-0677-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-017-0677-z

Keywords

Navigation