Skip to main content

Advertisement

Log in

The Inhibitory Co-Receptor, PECAM-1 Provides a Protective Effect in Suppression of Collagen-Induced Arthritis

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Studies of PECAM-1−/− mice have identified that PECAM-1 functions as an inhibitory co-receptor to modulate immunological responsiveness. In this study, we describe the in vivo consequences of PECAM-1 deficiency in mouse models of collagen-induced arthritis (CIA) and K/BxN passive transfer model that resembles many of the features of human rheumatoid arthritis. Immunization of PECAM-1−/− C57BL/6 (H-2b) mice with chicken collagen type II induced CIA with an incidence of 82% by day 49, while 33%; of wild-type and 100% of DBA/1 mice developed arthritis in a similar time frame. The mean onset of disease for PECAM-1−/− C57BL/6 mice was day 32 compared to day 51 for wild-type C57BL/6 mice and day 18 for DBA/1 mice (H-2q susceptible). In terms of disease severity, the mean maximal arthritic index for PECAM-1−/− C57BL/6 mice was comparable to DBA/1 mice (8.91 ± 0.91 vs 11.67 ± 0.82). This mean maximal index in PECAM-1−/− C57BL/6 mice was significantly higher than wild-type C57BL/6 mice (5.00 ± 0.73). IgG1 and IgG2b antibody responses against CII were elevated in arthritic PECAM-1−/− C57BL/6 mice compared to wild-type C57BL/6 mice. Histological examination of arthritic paws of PECAM-1−/− C57BL/6 mice revealed inflammatory infiltrates of lymphocytic/monocytic cells and cartilage/bone destruction similar to CIA-induced DBA/1 arthritic paws. In the K/BxN model, the arthritis was not augmented in PECAM-1−/− mice compared to wild-type mice. In contrast, in active CIA, PECAM-1−/− mice developed severe disease comparable to susceptible DBA/1 mice and profoundly more severe than C57BL/6 mice, where only one third developed a mild/moderate disease. Together these observations suggest that PECAM-1 plays a crucial role in the suppression of development of autoimmune arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van den Berg WB: Lessons from animal models of arthritis. Curr Rheumatol Rep 4(3):232–239, 2002

    Google Scholar 

  2. Myers LK Rosloniec EF, Cremer MA, Kang AH: Collagen-induced arthritis, an animal model of autoimmunity. Life Sci 61(19):1861–1878, 1997

    Google Scholar 

  3. Cremer MA, Rosloniec EF, Kang AH: The cartilage collagens: A review of their structure, organization, and role in the pathogenesis of experimental arthritis in animals and in human rheumatic disease. J Mol Med 76:275–288, 1998

    Google Scholar 

  4. Lindqvist AKB, Bockermann R, Johansson ACM, Nandakumar KS, Johannesson M, Holmdahl R: Mouse models of rheumatoid arthritis. Trends Genet. 18:S7–S13, 2002

    Google Scholar 

  5. Zvaifler NJ, Firestein GS: Pannus and pannocytes. Alternative models of joint destruction in rheumatoid arthritis. Arthritis Rheum 37(6):783–789, 1994

    Google Scholar 

  6. Ji H, Pettit A, Ohmura K, Ortiz-Lopez A, Duchatelle V, Degott C, Gravallese E, et al.: Critical roles for Interleukin 1 and tumour necrosis factor α in antibody-induced arthritis. J Exp Med 196(1):77–85, 2002

    Google Scholar 

  7. Maccioni M, Zeder-Lutz G, Huang H, Ebel C, Gerber P, Hergueux J, et al.: Arthritogenic monoclonal antibodies from K/BxN mice. J Exp Med 195(8):1071–1077, 2002

    Google Scholar 

  8. Kaplan CD, O’Neill SK, Koreny T, Czipri M, Finnegan A: Development of inflammation in proteoglycan-induced arthritis is dependent on Fcγ R regulation of the cytokine/chemokine environment. J Immunol 169:5851–5859, 2002

    Google Scholar 

  9. Matsumoto I, Lee DM, Goldbach-Mansky R, Sumida T, Hitchon CA, Schur PH, Anderson RJ, et al.: Low prevalence of antibodies to glucose-6-phosphate isomerase in patients with rheumatoid arthritis and a spectrum of other chronic autoimmune disorders. Arthritis Rheum 48(4):944–954, 2003

    Google Scholar 

  10. Cook AD, Rowley MJ, Mackay IR, Gough A, Emery P: Antibodies to type II collagen in early rheumatoid arthritis. Correlation with disease progression. Arthritis Rheum 39(10):1720–1727, 1996

    Google Scholar 

  11. Kleinau S, Martinsson P, Heyman B: Induction and suppression of collagen-induced arthritis is dependent on distinct Fcγ receptors. J Exp Med 191(9):1611–1616, 2000

    Google Scholar 

  12. Diaz de Stahl T, Andren M, Martinsson P, Verbeek JS, Kleinau S: Expression of Fcγ RIII is required for development of collageninduced arthritis. Eur J Immunol 32:2915–2922, 2002

    Google Scholar 

  13. Ji H, Ohmura K, Mahmood U, Lee DM, Hofhuis FM, Boackle SA, et al.: Arthritis critically dependent on innate immune system players. Immunity 16: 157--168, 2002

    Google Scholar 

  14. Corr M, Crain B: The role of Fcγ R signalling in the K/BxN serum transfer model of arthritis. J Immunol 169:6604–6609, 2002

    Google Scholar 

  15. Takai T, Ono M, Hikida M, Ohmori H, Ravetch JV: Augmented humoral and anaphylactic responses in Fcγ RII-deficient mice. Nature 379:346–349, 1996

    Article  CAS  PubMed  Google Scholar 

  16. Yuasa T, Kubo S, Yoshino T, Ujike A, Matsumura K, Ono M, et al.: Deletion of Fcγ receptor IIb renders H-2b mice susceptible to collagen-induced arthritis. J Exp Med 189(1):187–194, 1999

    Google Scholar 

  17. Jackson DE: The unfolding tale of PECAM-FEBS Lett 540:7–14, 2003

    Google Scholar 

  18. Wilkinson R, Lyons AB, Roberts D, Wong MX, Bartley PA, Jackson DE: Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) acts as a regulator of B-cell development, B-cell antigen receptor (BCR)-mediated activation, and autoimmune disease. Blood 100(1):184–193, 2002

    Google Scholar 

  19. Scekanecs Z, Haines GK, Harlow LA, Shah MR, Fong TW, Fu R, et al.: Increased synovial expression of the adhesion molecules CD66a, CD66b, and CD31 in rheumatoid and osteoarthritis. Clin Immunol Immunopathol 76:180–186, 1995

    Google Scholar 

  20. Volin MV, Szekanecz Z, Halloran MM, Woods JM, Magua J, Damergis JA, et al.: PECAM-1 and Leukosialin (CD43) expression correlate with heightened inflammation in rat adjuvant-induced arthritis. Exp Mol Pathol 66(3):211–219, 1999

    Google Scholar 

  21. Decking J, Mayer A, Petrow P, Seiffge D, Karbowski A: Antibodies to PECAM-1 and glucocorticoids reduce leukocyte adhesion in adjuvant arthritis of the rat knee synovium in vivo. Inflamm Res 50(12):609–615, 2001

    Google Scholar 

  22. Ishikaw J, Okada Y, Bird IN, Jasani B, Spragg JH, Yamada T: Use of anti-platelet endothelial cell adhesion molecule-1 antibody in the control of disease progression in established collagen-induced arthritis in DBA/1J mice. Jpn J Pharmacol 88:332–340, 2002

    Google Scholar 

  23. Duncan GS, Andrew DP, Takimoto H, Kaufman SA, Yoshida H, Spellberg J, et al.: Genetic evidence for functional redundancy of platelet endothelial cell adhesion molecule-1 (PECAM-1): CD31 deficient mice reveal PECAM-1-dependent and PECAM-1-independent functions. J Immunol 162(5):3022–3030, 1999

    Google Scholar 

  24. Kouskoff V, Korganow AS, Duchatelle V, Degott C, Benoist C, Mathis D: Organ-specific disease provoked by systemic autoimmunity. Cell 87:811–822, 1996

    Google Scholar 

  25. Campbell IK, Hamilton JA, Wicks IP: Collagen-induced arthritis in C57BL/6 (H-2b) mice: New insights into an important disease model of rheumatoid arthritis. Eur J Immunol 30:1568–1575, 2000

    Google Scholar 

  26. Wooley PH, Luthra HS, Stuart JM, David SC: Type II collagen-induced arthritis in mice. I. Major histocompatibility complex (I-region) linkage and antibody correlates. J Exp Med 154:688–700, 1981

    Google Scholar 

  27. Wooley PH, Luthra HS, Griffiths MM, Stuart JM, Huse A, David SC: Type II collagen-induced arthritis in mice. IV. Variations in immunogenetic regulation provide evidence for multiple arthritogenic epitopes on the collagen molecule. J Immunol 135:2443–2451, 1985

    Google Scholar 

  28. Courtenay JS, Dallman MJ, Dayan AD, Martin A, Mosedale B: Immunization against heterologous type II collagen induces arthritis in mice. Nature 283:666–668, 1980

    Google Scholar 

  29. Seki N, Sudo Y, Yoshioka T, Sugihara S, Fujitsu T, Sakuma S, et al.: Type II collagen-induced murine arthritis. Induction and perpetuation of arthritis require synergy between humoral and cell-mediated immunity. J Immunol 140:1477–1484, 1988

    Google Scholar 

  30. Ravetch JV, Lanier LL: Immune inhibitory receptors. Science 290(5489):84–89, 2000

    Article  CAS  PubMed  Google Scholar 

  31. Benoist C, Mathis D: A revival of the B cell paradigm for rheumatoid arthritis pathogenesis? Arthritis Res 2:90–94, 2000

    Google Scholar 

  32. Hirano T: Revival of the autoantibody model in rheumatoid arthritis. Nature Immunol 3(4):342–344, 2002

    Google Scholar 

  33. Galloway TS, Ray K, Malhotra R: Regulation of B lymphocytes in health and disease. Meeting review. Mol Immunol 39:649–653, 2003

    Google Scholar 

  34. Hogarth PM: Fc receptors are major mediators of antibody based inflammation in autoimmunity. Curr Opin Immunol 14(6):798–802, 2002

    Google Scholar 

  35. Muller WA, Weigl SA, Deng X, Phillips DM: PECAM-1 is required for transendothelial migration of leukocytes. J Exp Med 178:449–460, 1993

    Article  CAS  PubMed  Google Scholar 

  36. Vaporciyan AA, DeLisser HM, Yan HC, Mendiguren II, Thom SR, Jones ML, et al.: Involvement of Platelet Endothelial Cell Adhesion Molecule-1 in neutrophil recruitment in vivo. Science 262:1580–1582, 1993

    Google Scholar 

  37. Bogen S, Pak J, Garifallou M, Deng X, Muller WA: Monoclonal antibody to murine PECAM-1 blocks acute inflammation in vivo. J Exp Med 79:1059–1064, 1994

    Google Scholar 

  38. Ohto H, Maeda H, Shibata Y, Chen RF, Ozaki Y, Higashihara M, et al.: A novel leukocyte differentiation antigen: Two monoclonal antibodies TM2 and TM3 define a 120-kd molecule present on neutrophils, monocytes, platelets, and activated lymphoblasts. Blood 66(4):873–881, 1985

    Google Scholar 

  39. Laio F, Ali J, Greene T, Muller WA: Soluble domain 1 of platelet-endothelial cell–adhesion molecule (PECAM) is sufficient to block transendothelial migration in vitro and in vivo. J Exp Med 185(7):1349–1357, 1997

    Google Scholar 

  40. Laio F, Schenkel AR, Muller WA: Transgenic mice expressing different levels of soluble platelet/endothelial cell adhesion molecule-IgG display distinct inflammatory phenotypes. J Immunol 163(10):5640–5648, 1999

    Google Scholar 

  41. Nakada MT, Amin K, Christofidou-Solomidou M, O’Brien CD, Sun J, Gurubhagavatula I, et al.: Antibodies against the first Ig-like domain of human platelet endothelial cell adhesion molecule-1 (PECAM-1) that inhibit PECAM-1-dependent homophilic adhesion block in vivo neutrophil recruitment. J Immunol 164(1):452–462, 2000

    Google Scholar 

  42. Graesser D, Solowiej A, Bruckner M, Osterweil E, Juedes A, Davis S, et al.: Altered vascular permeability and early onset of experimental autoimmune encephalomyelitis in PECAM-1-deficient mice. J Clin Invest 109(3):383–392, 2002

    Google Scholar 

  43. Solowiej A, Biswas P, Graesser D, Madri JA: Lack of platelet endothelial cell adhesion molecule-1 attenuates foreign body inflammation because of decreased angiogenesis. Am J Pathol 162(3):953–962, 2003

    Google Scholar 

  44. Jones KL, Hughan SC, Dopheide SM, Farndale RW, Jackson SP, Jackson DE: Platelet endothelial cell adhesion molecule-1 is a negative regulator of platelet–collagen interactions. Blood 98:1456–1463, 2001

    Google Scholar 

  45. Patil S, Newman DK, Newman PJ: Platelet endothelial cell adhesion molecule-1 serves as an inhibitory receptor that modulates platelet responses to collagen. Blood 97:1727–1732, 2001

    Google Scholar 

  46. Thai LM, Ashman LK, Harbour SN, Hogarth PM, Jackson DE: Physical proximity and functional interplay of PECAM-1 with the Fc receptor Fcγ RIIa on the platelet plasma membrane. Blood 102:3637–3745, 2003

    Google Scholar 

  47. Ji H, Gauguier D, Ohmura K, Gonzalez A, Duchatelle V, Danoy P, et al.: Genetic influences on the end-stage effector phase of arthritis. J Exp Med 194:321–330, 2001

    Google Scholar 

  48. Tada Y, Koarada S, Morito F, Ushiyama O, Haruta Y, Kanegae F, et al.: Acceleration of the onset of collagen-induced arthritis by a deficiency of platelet endothelial cell adhesion molecule-1. Arthritis Rheum 48(11):3280–3290, 2003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise E. Jackson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

WONG, MX., Hayball, J.D., Hogarth, P.M. et al. The Inhibitory Co-Receptor, PECAM-1 Provides a Protective Effect in Suppression of Collagen-Induced Arthritis. J Clin Immunol 25, 19–28 (2005). https://doi.org/10.1007/s10875-005-0354-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-005-0354-7

Keywords

Navigation