Skip to main content

Advertisement

Log in

Three Copies of Four Interferon Receptor Genes Underlie a Mild Type I Interferonopathy in Down Syndrome

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

A Commentary to this article was published on 25 July 2020

Abstract

Down syndrome (DS) is characterized by the occurrence of three copies of human chromosome 21 (HSA21). HSA21 contains a cluster of four interferon receptor (IFN-R) genes: IFNAR1, IFNAR2, IFNGR2, and IL10RB. DS patients often develop mucocutaneous infections and autoimmune diseases, mimicking patients with heterozygous gain-of-function (GOF) STAT1 mutations, which enhance cellular responses to three types of interferon (IFN). A gene dosage effect at these four loci may contribute to the infectious and autoimmune manifestations observed in individuals with DS. We report high levels of IFN-αR1, IFN-αR2, and IFN-γR2 expression on the surface of monocytes and EBV-transformed-B (EBV-B) cells from studying 45 DS patients. Total and phosphorylated STAT1 (STAT1 and pSTAT1) levels were constitutively high in unstimulated and IFN-α- and IFN-γ-stimulated monocytes from DS patients but lower than those in patients with GOF STAT1 mutations. Following stimulation with IFN-α or -γ, but not with IL-6 or IL-21, pSTAT1 and IFN-γ activation factor (GAF) DNA-binding activities were significantly higher in the EBV-B cells of DS patients than in controls. These responses resemble the dysregulated responses observed in patients with STAT1 GOF mutations. Concentrations of plasma type I IFNs were high in 12% of the DS patients tested (1.8% in the healthy controls). Levels of type I IFNs, IFN-Rs, and STAT1 were similar in DS patients with and without recurrent skin infections. We performed a genome-wide transcriptomic analysis based on principal component analysis and interferon modules on circulating monocytes. We found that DS monocytes had levels of both IFN-α- and IFN-γ-inducible ISGs intermediate to those of monocytes from healthy controls and from patients with GOF STAT1 mutations. Unlike patients with GOF STAT1 mutations, patients with DS had normal circulating Th17 counts and a high proportion of terminally differentiated CD8+ T cells with low levels of STAT1 expression. We conclude a mild interferonopathy in Down syndrome leads to an incomplete penetrance at both cellular and clinical level, which is not correlate with recurrent skin bacterial or fungal infections. The constitutive upregulation of type I and type II IFN-R, at least in monocytes of DS patients, may contribute to the autoimmune diseases observed in these individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lejeune J, Gautier M, Turpin R. A study of somatic chromosomes in nine infants with mongolism. CR Acad Sci. 1959;248:1721–2.

    CAS  Google Scholar 

  2. de Graaf G, Buckley F, Skotko BG. Estimation of the number of people with down syndrome in the United States. Genet Med. 2017;19:439–47.

    PubMed  Google Scholar 

  3. Oster J, Mikkelsen M, Nielsen A. Mortality and life-table in Down’s syndrome. Acta Paediatr Scand. 1975;64:322–6.

    PubMed  CAS  Google Scholar 

  4. Bell JA, Pearn JH, Firman D. Childhood deaths in Down’s syndrome. Survival curves and causes of death from a total population study in Queensland, Australia, 1976 to 1985. J Med Genet. 1989;26:764–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Nagarajan A, Panda A, Behura SS, Mohiddin G, Narayanaswamy AB, Masthan KMK. Oral Candidal and Streptococcal carriage in Down syndrome patients. J Nat Sci Biol Med. 2015;6:300–5.

    PubMed  PubMed Central  Google Scholar 

  6. Scully C, van Bruggen W, Diz Dios P, Casal B, Porter S, Davison MF. Down syndrome: lip lesions (angular stomatitis and fissures) and Candida albicans. Br J Dermatol. 2002;147:37–40.

    PubMed  CAS  Google Scholar 

  7. Donnelly LF, Shott SR, LaRose CR, Chini BA, Amin RS. Causes of persistent obstructive sleep apnea despite previous tonsillectomy and adenoidectomy in children with down syndrome as depicted on static and dynamic cine MRI. Am J Roentgenol. 2004;183:175–81.

    Google Scholar 

  8. Madan V, Williams J, Lear JT. Dermatological manifestations of Down’s syndrome. Clin Exp Dermatol. 2006;31:623–9.

    PubMed  CAS  Google Scholar 

  9. Pikora TJ, Bourke J, Bathgate K, Foley KR, Lennox N, Leonard H. Health conditions and their impact among adolescents and young adults with down syndrome. PLoS One. 2014;9:e96868.

    PubMed  PubMed Central  Google Scholar 

  10. Ram G, Chinen J. Infections and immunodeficiency in down syndrome. Clin Exp Immunol. 2011;164:9–16.

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Abanto J, Ciamponi AL, Francischini E, Murakami C, de Rezende NPM, Gallottini M. Medical problems and oral care of patients with down syndrome: a literature review. Spec Care Dentist. 2011;31:197–203.

    PubMed  Google Scholar 

  12. Svejgaard EL, Nilsson J. Onychomycosis in Denmark: prevalence of fungal nail infection in general practice. Mycoses. 2004;47:131–5.

    PubMed  CAS  Google Scholar 

  13. Johnston JN, Kaplan SL, Mason EO, Hulten KG. Characterization of Staphylococcus aureus infections in children with down syndrome. J Infect Chemother. 2015;21:790–4.

    PubMed  Google Scholar 

  14. Eldars W, Eldegla H, Yahia S, Ela MA, Hawas S. Prevalence of community acquired infections in down syndrome children: a single center study. Braz J Infect Dis. 2013;17:624–5.

    PubMed  Google Scholar 

  15. Poizeau F, Sbidian E, Mircher C, Rebillat AS, Chosidow O, Wolkenstein P, et al. Prevalence and description of hidradenitis suppurativa in down syndrome: a cross-sectional study of 783 subjects. Acta Derm Venereol. 2019;99:351–2.

    PubMed  Google Scholar 

  16. Romanio MR, Coraine LA, Maielo VP, Abramczyc ML, Souza RL, Oliveira NF. FUNGEMIA POR SACCHAROMYCES CEREVISIAE EM PACIENTE PEDIÁTRICO APÓS TRATAMENTO COM PROBIÓTICO. Rev Paul Pediatr. 2017;35(361–364):361–4.

    PubMed  PubMed Central  Google Scholar 

  17. Shetty S, Kini U, Joy R. Isolated lingual mucormycosis in an infant with Down syndrome. Ear Nose Throat J. 2008;87(34–5):43.

    Google Scholar 

  18. Lavigne J, Sharr C, Elsharkawi I, Ozonoff A, Baumer N, Brasington C, et al. Thyroid dysfunction in patients with down syndrome: results from a multi-institutional registry study. Am J Med Genet Part A. 2017;173:1539–45. https://doi.org/10.1002/ajmg.a.38219.

    Article  PubMed  Google Scholar 

  19. Rachubinski AL, Estrada BE, Norris D, Dunnick CA, Boldrick JC, Espinosa JM. Janus kinase inhibition in Down syndrome: 2 cases of therapeutic benefit for alopecia areata. JAAD Case Rep. 2019;5:365–7.

    PubMed  PubMed Central  Google Scholar 

  20. Ludvigsson JF, Lebwohl B, Green PHR, Chung WK, Mårild K. Celiac disease and Down syndrome mortality: a nationwide cohort study. BMC Pediatr. 2017;17:41.

    PubMed  PubMed Central  Google Scholar 

  21. Antonarakis SE, Lyle R, Dermitzakis ET, Reymond A, Deutsch S. Chromosome 21 and Down syndrome: from genomics to pathophysiology. Nat Rev Genet. 2004;5:725–38.

    PubMed  CAS  Google Scholar 

  22. Fölster-Holst R, Rohrer T, Jung AM. Dermatological aspects of the S2k guidelines on Down syndrome in childhood and adolescence. JDDG - J Ger Soc Dermatol. 2018;16:1289–95.

    Google Scholar 

  23. De Hingh YCM, et al. Intrinsic abnormalities of lymphocyte counts in children with Down syndrome. J Pediatr. 2005;147:744–7.

    PubMed  Google Scholar 

  24. Toubiana J, Okada S, Hiller J, Oleastro M, Lagos Gomez M, Aldave Becerra JC, et al. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood. 2016;127:3154–64.

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Liu L, Okada S, Kong XF, Kreins AY, Cypowyj S, Abhyankar A, et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med. 2011;208:1635–48.

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Puel A, Cypowyj S, Maródi L, Abel L, Picard C, Casanova JL. Inborn errors of human IL-17 immunity underlie chronic mucocutaneous candidiasis. Curr Opin Allergy Clin Immunol. 2012;12:616–22.

    PubMed  PubMed Central  CAS  Google Scholar 

  27. van de Veerdonk FL, Plantinga TS, Hoischen A, Smeekens SP, Joosten LAB, Gilissen C, et al. STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N Engl J Med. 2011;365:54–61.

    PubMed  Google Scholar 

  28. Borden EC, Sen GC, Uze G, Silverman RH, Ransohoff RM, Foster GR, et al. Interferons at age 50: past, current and future impact on biomedicine. Nat Rev Drug Discov. 2007;6:975–90.

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Tan YH, Schneider EL, Tischfield J, Epstein CJ, Ruddle FH. Human chromosome 21 dosage: effect on the expression of the interferon induced antiviral state. Science. 1974;186:61–3.

    PubMed  CAS  Google Scholar 

  30. Cupples CG, Tan YH. Effect of human interferon preparations on lymphoblastogenesis in Down’s syndrome. Nature. 1977;267:165–7.

    PubMed  CAS  Google Scholar 

  31. Prandini P, Deutsch S, Lyle R, Gagnebin M, Vivier CD, Delorenzi M, et al. Natural gene-expression variation in down syndrome modulates the outcome of gene-dosage imbalance. Am J Hum Genet. 2007;81:252–63.

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Sullivan KD, Lewis HC, Hill AA, Pandey A, Jackson LP, Cabral JM, et al. Trisomy 21 consistently activates the interferon response. Elife. 2016;5:e16220.

    PubMed  PubMed Central  Google Scholar 

  33. Kong XF, Vogt G, Itan Y, Macura-Biegun A, Szaflarska A, Kowalczyk D, et al. Haploinsufficiency at the human IFNGR2 locus contributes to mycobacterial disease. Hum Mol Genet. 2013;22:769–81.

    PubMed  CAS  Google Scholar 

  34. Kong XF, et al. A novel form of human STAT1 deficiency impairing early but not late responses to interferons. Blood. 2010;116:5896–906.

    Google Scholar 

  35. Kong XF, Vogt G, Chapgier A, Lamaze C, Bustamante J, Prando C, et al. A novel form of cell type-specific partial IFN-gammaR1 deficiency caused by a germ line mutation of the IFNGR1 initiation codon. Hum Mol Genet. 2010;19:434–44.

    PubMed  CAS  Google Scholar 

  36. Rodero MP, Decalf J, Bondet V, Hunt D, Rice GI, Werneke S, et al. Detection of interferon alpha protein reveals differential levels and cellular sources in disease. J Exp Med. 2017;214:1547–55.

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Rice GI, Forte GMA, Szynkiewicz M, Chase DS, Aeby A, Abdel-Hamid MS, et al. Assessment of interferon-related biomarkers in Aicardi-Goutières syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case-control study. Lancet Neurol. 2013;12:1159–69.

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Obermoser G, Presnell S, Domico K, Xu H, Wang Y, Anguiano E, et al. Systems scale interactive exploration reveals quantitative and qualitative differences in response to influenza and pneumococcal vaccines. Immunity. 2013;38:831–44.

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Chaussabel D, Quinn C, Shen J, Patel P, Glaser C, Baldwin N, et al. A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus. Immunity. 2008;29:150–64.

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Ottaviano G, et al. A prevalent CXCR3+ phenotype of circulating follicular helper T cells indicates humoral dysregulation in children with Down syndrome. J Clin Immunol. 2020:1–9. https://doi.org/10.1007/s10875-020-00755-0.

  41. Araya P, Waugh KA, Sullivan KD, Núñez NG, Roselli E, Smith KP, et al. Trisomy 21 dysregulates T cell lineages toward an autoimmunity-prone state associated with interferon hyperactivity. Proc Natl Acad Sci U S A. 2019;116:24231–41.

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Letourneau A, Santoni FA, Bonilla X, Sailani MR, Gonzalez D, Kind J, et al. Domains of genome-wide gene expression dysregulation in Down’s syndrome. Nature. 2014;508:345–50.

    PubMed  CAS  Google Scholar 

  43. Reeves RH, Irving NG, Moran TH, Wohn A, Kitt C, Sisodia SS, et al. A mouse model for down syndrome exhibits learning and behaviour deficits. Nat Genet. 1995;11:177–84.

    PubMed  CAS  Google Scholar 

  44. Syedbasha M, Egli A. Interferon lambda: modulating immunity in infectious diseases. Front Immunol. 2017;8:119.

    PubMed  PubMed Central  Google Scholar 

  45. Fatehullah A, Tan SH, Barker N. Organoids as an in vitro model of human development and disease. Nat Cell Biol. 2016;18:246–54.

    PubMed  Google Scholar 

  46. Rodero MP, Crow YJ. Type I interferon-mediated monogenic autoinflammation: the type I interferonopathies, a conceptual overview. J Exp Med. 2016;213:2527–38.

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J, Banchereau J, et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med. 2003;197:711–23.

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Altman MC et al. A novel repertoire of blood transcriptome modules based on co-expression patterns across sixteen disease and physiological states. bioRxiv 525709 (2019). https://doi.org/10.1101/525709

  49. Meyer S, Woodward M, Hertel C, Vlaicu P, Haque Y, Kärner J, et al. AIRE-deficient patients harbor unique high-affinity disease-ameliorating autoantibodies. Cell. 2016;166:582–95.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We thank Yanick Crow, Barry Coller, Charlie Rice, James Krueger, and Timothy Wang for helpful discussions and critical reading. We thank Y. Nemirovskaya, T. Kochetkov, M. Romanick, L. Amar, C. Patissier, C. Desvallées, M. Woollett, A. Gall, and J. Gonzalez for technical and secretarial assistance and all members of the Laboratory of Human Genetics of Infectious Diseases for helpful discussions. X-F.K was supported by the Jerome Lejeune Foundation and Alexander’s Angels Inc. X-F.K is currently a gastroenterology fellow in CUIMC supported by NIH grant T32 DK083256. The Laboratory of Human Genetics of Infectious Diseases is supported by grants from the St. Giles Foundation, the Jeffrey Modell Foundation, The Rockefeller University Center for Clinical and Translational Science grant number UL1TR001866 from the National Center for Research Resources and the National Center for Advancing Sciences (NCATS), the National Institutes of Health, the National Institute of Allergy and Infectious Diseases (grants 5R01AI127564 and 5R37AI095983), grants from the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (ANR-10-LABX-62-IBEID) and the French National Research Agency (ANR) under the “Investments for the future” program (ANR-10-IAHU-01), ANR-IFNGPHOX (ANR-13-ISV3-0001-01) and ANR-GENMSMD (ANR-16-CE17-0005-01), LTh-MSMD-CMCD (ANR-18-CE93-0008-01), HGDIFD (ANR-14-CE15-0006-01), Institut National de la Santé et de la Recherche Médicale (INSERM), University of Paris, and The Rockefeller University and the Helmut Horten Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Fei Kong.

Ethics declarations

Conflict of Interest

Dr. Casanova reports personal fees from Celgene, personal fees from ADMA, personal fees from Nimbus, personal fees from Vitae Pharmaceuticals, Inc., personal fees from KymeraTX, personal fees from Sanofi, personal fees from Asahi Kasei, personal fees from Pfizer, personal fees from Elixiron Immunotherapeutics, outside the submitted work. The other authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PPTX 1069 kb)

ESM 2

(DOCX 16 kb)

ESM 3

(DOCX 14 kb)

ESM 4

(XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, XF., Worley, L., Rinchai, D. et al. Three Copies of Four Interferon Receptor Genes Underlie a Mild Type I Interferonopathy in Down Syndrome. J Clin Immunol 40, 807–819 (2020). https://doi.org/10.1007/s10875-020-00803-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-020-00803-9

Keywords

Navigation