Skip to main content
Log in

Bimetallic Au//Ag Alloys Inside SiO2 Using a Solid-State Method

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Bimetallic Au/Ag nanostructures have been included inside SiO2 by pyrolysis of the macromolecular complexes Chitosan·(MLn/M′Ln)n·SiO2 and PSP-4-PVP·(MLn/M′Ln)n·SiO2 with MLn = AuCl3 and M′Ln = Ag(CF3SO3). The structural characterization was performed by XRD (X-ray diffraction of powder) and UV–Vis, and the microstructural characterization was done by SEM/EDS analysis HRTEM. The resulting products from the pyrolytic precursors PSP-4-PVP·(AuCl3/AgSO3CF3)n·SiO2 1:1 (1), PSP-4-PVP·(AuCl3/AgSO3CF3)n·SiO2 1:5 (2), Chitosan·(AuCl3/AgSO3CF3)n·SiO2 1:1 (3) and Chitosan·(AuCl3/AgSO3CF3)n·SiO2 1:5 (4) were Au/Ag//SiO2, Au//SiO2 and Ag//SiO2 as well as isolated Au and Ag, depending on the polymeric precursor. The Chitosan polymer precursor induces mainly Ag and Ag/SiO2 nanostructures, while PSP-4-PVP induces mainly Au/Ag//SiO2 nanostructures. This can be explained by the facility to link Ag+ to the NH2 and OH groups of Chitosan than to the pyridine of PSP-4-PVP. On the contrary, Au3+ exhibits most coordination ability to pyridine groups of PSP-4-PVP than NH2- and OH-groups of Chitosan. EDS mapping analysis indicates a uniform distribution of the Au/Ag nanostructure inside the SiO2 matrix. Using reflectance diffuse analysis, the plasmon is consistent with the Au/Ag alloys structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. D. Gilroy, A. Ruditskiy, H. Sin-Chieh Peng, D. Qin, and Y. Xia (2016). Chem. Rev. 116, 10414–10472.

    Article  CAS  Google Scholar 

  2. G. Walkers and I. P. Parkin (2009). J. Mater. Chem. 19, 574–590.

    Article  Google Scholar 

  3. M. P. Pileni (2007). Acc. Chem. Res. 40, 685–693.

    Article  CAS  Google Scholar 

  4. M. P. Pileni (2011). J. Mater. Chem. 21, 16748–16758.

    Article  CAS  Google Scholar 

  5. Y. F. Wan, N. Goubet, P. A. Albouy, and M. P. Pileni (2013). Langmuir 29, 7456–7463.

    Article  CAS  Google Scholar 

  6. C. Díaz and M. L. Valenzuela Metallic nanostructures using oligo and polyphosphazenes as template or stabilizer in solid state. in H. S. Nalwa (ed.), Encyclopedia of Nanoscience and Nanotechnology, vol. 16 (American Scientific Publishers, Valencia, 2010), pp. 239–256.

    Google Scholar 

  7. C. Díaz, M. L. Valenzuela, and D. Bobadilla (2013). J. Chil. Chem. Soc. 58, 1994–1997.

    Article  Google Scholar 

  8. S. Liu and M.-Y. Han (2010). Chem. Asian J. 5, 36–45.

    CAS  Google Scholar 

  9. J. He, I. Ichinose, A. Nakao, Y. Shiraishi, and N. Toshima (2003). J. Am. Chem. Soc. 125, 11034–11040.

    Article  CAS  Google Scholar 

  10. C. Díaz, M. L. Valenzuela, V. Lavayen, K. Mendoza, O. Peña, and C. O’Dwyer (2011). Inorg. Chim. Acta 377, 5–13.

    Article  Google Scholar 

  11. C. Diaz, L. Barrientos, D. Carrillo, J. Valdebenito, M. L. Valenzuela, and P. Allende (2016). New J. Chem. 40, 6768–6776.

    Article  CAS  Google Scholar 

  12. G. De, B. Karmakar, and D. Ganguli (2000). J. Mater. Chem. 10, 2289–2293.

    Article  CAS  Google Scholar 

  13. M. Tsuji, R. Matsuo, P. Jiang, N. Miyamae, D. Ueyama, M. Nishio, S. Hikino, H. Kumagae, K. Sozana, and X.-L. Tang (2008). Cryst. Growth Des. 8, 2528–2536.

    Article  CAS  Google Scholar 

  14. X. Liu, A. Wang, X. Yang, T. Zhang, C.-Y. Mou, D.-S. Su, and J. Li (2009). Chem. Mater. 21, 410–418.

    Article  CAS  Google Scholar 

  15. S. Tokonami, N. Morita, K. Takasaki, and N. Toshima (2010). J. Phys. Chem. C 114, 10336–10341.

    Article  CAS  Google Scholar 

  16. M. P. Mallin and C. J. Murphy (2002). Nano Lett. 2, 1235–1237.

    Article  CAS  Google Scholar 

  17. A.-Q. Wang, J.-H. Liu, S. D. Lin, T.-S. Ling, and C.-Y. Mou (2005). J. Catal. 233, 186–197.

    Article  CAS  Google Scholar 

  18. C.-W. Yen, M.-L. Lin, A. Wang, S. A. Chen, J.-M. Chen, and C.-Y. Mou (2009). J. Phys. Chem. C 113, 17831–17839.

    Article  CAS  Google Scholar 

  19. L. Liz-Marzan and A. P. Philipse (1995). J. Phys. Chem. 99, 15120–15128.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Fondecyt Projects 1120179, 1160241 and 1131112 for financial support. This research has also received funding from Consejo Superior de Investigaciones Científicas, Spain under Grant I-COOP LIGHT 2015CD0013. The use of Servicio General de Apoyo a las Investigación (SAI, University of Zaragoza) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Valenzuela.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diaz, C., Valenzuela, M.L., Bobadilla, D. et al. Bimetallic Au//Ag Alloys Inside SiO2 Using a Solid-State Method. J Clust Sci 28, 2809–2815 (2017). https://doi.org/10.1007/s10876-017-1261-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1261-6

Keywords

Navigation