Skip to main content
Log in

TiO2/SiO2 Composite for Efficient Protection of UVA and UVB Rays Through of a Solvent-Less Synthesis

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In an effort to discover new inorganic UV absorbers, titania included into silica was prepared using a solvent-less solid state method involving the pyrolysis of the as prepared precursor Chitosan·(TiOSO4)/SiO2, as an alternative and versatile way to using these compounds for practical applications. The new TiO2/SiO2 composite was characterized by PXRD, SEM–EDS, TEM and UV–Vis absorption analysis. The SEM–EDS mapping images show a uniform distribution of TiO2 into the silica matrix. The optical properties of the composite have shown an interesting result related to high absorption of UVB rays and an improved absorption of UVA rays than pure TiO2. Efficient suppression of photocatalytic behavior of TiO2, when is incorporated into silica, was evidenced from 85 to 31%, suggesting it material as alternative inorganic UV absorber to remains the properties of the methylene blue dye. These results reveal their potential use in practical textile industry and UV protection agent to avoid human damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Z. Wu, Y. Xue, Z. Zou, X. Wang, and F. Gao (2017). J. Colloids Interface Sci. 490, 420.

    CAS  Google Scholar 

  2. J. Ryu, W. Kim, J. Kim, J. Ju, and J. Kim (2017). Catal. Today 282, 24.

    CAS  Google Scholar 

  3. P. Xiong and J. Hu (2017). Catal. Today 282, 48.

    CAS  Google Scholar 

  4. M. J. Santillan, N. E. Quaranta, and A. R. Boccaccini (2010). Surf. Coat. Technol. 205, 2562.

    CAS  Google Scholar 

  5. P. V. Kamat, K. Tvrdy, D. Baker, and J. Radich (2010). Chem. Rev. 110, 6664.

    CAS  PubMed  Google Scholar 

  6. A. Ayati, A. Ahmadpour, F. Bamoharram, B. Tanhaei, M. Mänttäri, and M. Sillanpää (2014). Chemosphere 107, 163.

    CAS  PubMed  Google Scholar 

  7. Y. Lee, J. Joo, Y. Yin, and F. Zaera (2016). ACS Energy Lett. 1, 52.

    CAS  Google Scholar 

  8. B. D. Coday, B. Yaffe, P. Xu, and T. Y. Cath (2014). Environ. Sci. Technol. 48, 3612.

    CAS  PubMed  Google Scholar 

  9. C. Wang, J. Li, X. Lv, Y. Zhang, and G. Guo (2014). Energy Environ. Sci. 7, 2831.

    CAS  Google Scholar 

  10. M. Yola, T. Eren, and N. Atar (2014). Chem. Eng. J. 250, 288.

    CAS  Google Scholar 

  11. M. Wang, J. Ioccozia, L. Sun, C. Lin, and Z. Lin (2014). Energy Environ. Sci. 7, 2182.

    CAS  Google Scholar 

  12. C. Xu, G. P. Rangaiah, and X. S. Zhao (2014). Ind. Eng. Chem. Res. 53, 14641.

    CAS  Google Scholar 

  13. X. H. Yang, H. T. Fu, X. C. Wang, J. L. Yang, X. C. Jiang, and A. B. Yu (2014). J. Nanopart. Res. 16, 2526.

    Google Scholar 

  14. B. Faure, G. Salazar-Alvarez, A. Ahniyaz, I. Villaluenga, G. Berriozabal, Y. De Miguel, and L. Bergström (2013). Sci. Technol. Adv. Mater. 14, 023001.

    PubMed  PubMed Central  Google Scholar 

  15. L. Wallenhorst, L. Gurău, A. Gellerich, H. Militz, G. Ohms, and W. Viöl (2018). Appl. Surf. Sci. 434, 1183.

    CAS  Google Scholar 

  16. M. M. Abdel-Aziz, O. A. Azim, L. A. Abdel-Wahab, and M. M. Seddik (2006). Appl. Surf. Sci. 252, 8716.

    CAS  Google Scholar 

  17. M. Zhang, W. Xie, B. Tang, L. Sun, and X. Wang (2017). Text. Res. J. 87, 1784.

    CAS  Google Scholar 

  18. M. Montazer and S. Morshedi (2014). J. Ind. Eng. Chem. 20, 83.

    CAS  Google Scholar 

  19. J. Xiao, W. Chen, and F. Wang (2013). Macromolecules 46, 375.

    CAS  Google Scholar 

  20. X. Feng, S. Zhang, and X. Lou (2013). Colloids Surf. B Biointerfaces 107, 220.

    CAS  PubMed  Google Scholar 

  21. Y. Ren, M. Chen, and Y. Zhang (2010). Langmuir 26, 11391.

    CAS  PubMed  Google Scholar 

  22. K. J. Nakamura, Y. Ide, and M. Ogawa (2011). Mater. Lett. 65, 24.

    CAS  Google Scholar 

  23. X. Chen and S. Mao (2007). Chem. Rev. 107, 2891.

    CAS  Google Scholar 

  24. A. Dodd, A. McKinley, T. Tsuzuki, and M. Saunders (2007). J. Phys. Chem. Solids 68, 2341.

    CAS  Google Scholar 

  25. G. Walkers and I. P. Parkin (2009). J. Mater. Chem. 19, 574.

    Google Scholar 

  26. M. Meilikhov, K. Yusenko, D. Esken, S. Turner, G. Van Tendoloo, and R. A. Fischer (2010). Eur. J. Inorg. Chem. 2010, 3701.

    Google Scholar 

  27. B. Teo and X. Sun (2007). Chem. Rev. 107, 1454.

    CAS  PubMed  Google Scholar 

  28. G. B. Khomutov, V. V. Kislov, M. N. Antipirina, R. V. Gainutdinov, S. P. Gubin, A. Y. Obydenov, S. A. Pavlov, A. A. Rakhnyanskaya, A. N. Sergeev-Cherenkov, E. S. Soldatov, D. B. Suyatin, A. L. Toltikhina, A. S. Trifonov, and T. V. Yurova (2003). Microelectron. Eng. 69, 373.

    CAS  Google Scholar 

  29. M. P. Pileni (2007). Chem. Res. 40, 685.

    CAS  Google Scholar 

  30. M. P. Pileni (2001). J. Mater. Chem. 21, 16748.

    Google Scholar 

  31. Y. F. Wan, N. Goubet, P. A. Albouy, and M. P. Pileni (2013). Langmuir 29, 7456.

    CAS  PubMed  Google Scholar 

  32. H. S. Nalwa Encyclopedia of Nanoscience and Nanotechnology, 1st ed (American Scientific Publishers, Valencia, 2010).

    Google Scholar 

  33. S. Samal, D. Kim, K. Kim, and D. Park (2012). Chem. Eng. Res. Des. 90, 1074.

    CAS  Google Scholar 

  34. D. Fattakova-Rohlfing, A. Zaleska, and T. Bein (2014). Chem. Rev. 114, 9487.

    Google Scholar 

  35. S. G. Kumar and K. S. Koteswara (2014). Nanoscale 5, 11574.

    Google Scholar 

  36. S. Liu and M. Y. Han (2010). Chem. Asian J. 5, 36.

    CAS  PubMed  Google Scholar 

  37. T. Tanski, W. Matysiak, L. Krzeminski, and P. Jarka (2017). Appl. Surf. Sci. 424, 184.

    CAS  Google Scholar 

  38. E. Jimenez-Villar, V. Mestre, P. C. de Oliveira, and G. F. de Sá (2013). Nanoscale 5, 12512.

    CAS  PubMed  Google Scholar 

  39. C. Diaz, M. L. Valenzuela, V. Lavayen, K. Mendoza, O. Peña, and C. O’Dwyer (2011). Inorg. Chim. Acta 377, 5.

    CAS  Google Scholar 

  40. J. H. Yoo and S. W. Lee (2014). J. Nanosci. Nanotechnol. 14, 7648.

    CAS  PubMed  Google Scholar 

  41. C. Diaz, L. Barrientos, D. Carrillo, J. Valdebenito, M. L. Valenzuela, P. Allende, H. Geaney, and C. O’Dwyer (2016). N. J. Chem. 40, 6768.

    CAS  Google Scholar 

  42. P. Allende-González, M. A. Laguna-Bercero, L. Barrientos, M. L. Valenzuela, and C. Díaz (2018). ACS Appl. Energy Mater. 1, 3159.

    Google Scholar 

  43. G. De, B. Karmakar, and D. Ganguli (2000). J. Mater. Chem. 10, 2289.

    CAS  Google Scholar 

  44. Y. Kim, G. N. Shao, S. Jeon, S. M. Imran, P. B. Sarawade, and H. T. Kim (2013). Chem. Eng. J. 231, 502.

    CAS  Google Scholar 

  45. D. Cani and P. P. Pescarmona (2014). J. Catal. 311, 404.

    CAS  Google Scholar 

  46. Y. Wang, Z. Xing, Z. Li, G. Wang, X. Wu, and W. Zhou (2017). J. Colloid Interface Sci. 485, 32.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge FONDECYT Projects 1120179, 1160241 for financial support. This research has also received funding from Consejo Superior de Investigaciones Científicas, Spain under Grant I-COOP LIGHT 2015CD0013. The use of Servicio General de Apoyo a las Investigación (SAI, University of Zaragoza) is also acknowledged. LBP wants to thanks Pontificia Universidad Católica de Chile through Project 391354181 and Millennium Science Initiative of the Ministry of Economy, Development and Tourism, Chile, grant Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Barrientos or C. Diaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 523 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allende, P., Barrientos, L., Orera, A. et al. TiO2/SiO2 Composite for Efficient Protection of UVA and UVB Rays Through of a Solvent-Less Synthesis. J Clust Sci 30, 1511–1517 (2019). https://doi.org/10.1007/s10876-019-01594-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01594-9

Keywords

Navigation