Skip to main content
Log in

The effects of advanced monitoring on hemodynamic management in critically ill patients: a pre and post questionnaire study

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

In critically ill patients, many decisions depend on accurate assessment of the hemodynamic status. We evaluated the accuracy of physicians’ conventional hemodynamic assessment and the impact that additional advanced monitoring had on therapeutic decisions. Physicians from seven European countries filled in a questionnaire in patients in whom advanced hemodynamic monitoring using transpulmonary thermodilution (PiCCO system; Pulsion Medical Systems SE, Feldkirchen, Germany) was going to be initialized as part of routine care. The collected information included the currently proposed therapeutic intervention(s) and a prediction of the expected transpulmonary thermodilution-derived variables. After transpulmonary thermodilution measurements, physicians recorded any changes that were eventually made in the original therapeutic plan. A total of 315 questionnaires pertaining to 206 patients were completed. The mean difference (±standard deviation; 95 % limits of agreement) between estimated and measured hemodynamic variables was −1.54 (±2.16; −5.77 to 2.69) L/min for the cardiac output (CO), −74 (±235; −536 to 387) mL/m2 for the global end-diastolic volume index (GEDVI), and −0.5 (±5.2; −10.6 to 9.7) mL/kg for the extravascular lung water index (EVLWI). The percentage error for the CO, GEDVI, and EVLWI was 66, 64, and 95 %, respectively. In 54 % of cases physicians underestimated the actual CO by more than 20 %. The information provided by the additional advanced monitoring led 33, 22, 22, and 13 % of physicians to change their decisions about fluids, inotropes, vasoconstrictors, and diuretics, respectively. The limited clinical ability of physicians to correctly assess the hemodynamic status, and the significant impact that more physiological information has on major therapeutic decisions, support the use of advanced hemodynamic monitoring in critically ill patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Sevransky J. Clinical assessment of hemodynamically unstable patients. Curr Opin Crit Care. 2009;15:234–8. doi:10.1097/MCC.0b013e32832b70e5.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Eisenberg PR, Jaffe AS, Schuster DP. Clinical evaluation compared to pulmonary artery catheterization in the hemodynamic assessment of critically ill patients. Crit Care Med. 1984;12:549–53.

    Article  CAS  PubMed  Google Scholar 

  3. Connors AF Jr, Dawson NV, Robert McCaffree D, Gray BA, Siciliano CJ. Assessing hemodynamic status in critically ill patients: Do physicians use clinical information optimally? J Crit Care. 1987;2:174–80.

    Article  Google Scholar 

  4. Veale WN Jr., Morgan JH, Beatty JS, Sheppard SW, Dalton ML, Van de Water JM (2005) Hemodynamic and pulmonary fluid status in the trauma patient: are we slipping? Am Surg 71:621–625; discussion 625-626.

  5. Egan JR, Festa M, Cole AD, Nunn GR, Gillis J, Winlaw DS. Clinical assessment of cardiac performance in infants and children following cardiac surgery. Intensive Care Med. 2005;31:568–73. doi:10.1007/s00134-005-2569-5.

    Article  PubMed  Google Scholar 

  6. Hoff RG, Rinkel GJ, Verweij BH, Algra A, Kalkman CJ. Nurses’ prediction of volume status after aneurysmal subarachnoid haemorrhage: a prospective cohort study. Crit Care. 2008;12:R153. doi:10.1186/cc7142.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Grissom CK, Morris AH, Lanken PN, Ancukiewicz M, Orme JF Jr, Schoenfeld DA, Thompson BT. Association of physical examination with pulmonary artery catheter parameters in acute lung injury. Crit Care Med. 2009;37:2720–6.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Saugel B, Kirsche SV, Hapfelmeier A, Phillip V, Schultheiss C, Schmid RM, Huber W. Prediction of fluid responsiveness in patients admitted to the medical intensive care unit. J Crit Care. 2013;28(537):e531–9. doi:10.1016/j.jcrc.2012.10.008.

    Google Scholar 

  9. Saugel B, Ringmaier S, Holzapfel K, Schuster T, Phillip V, Schmid RM, Huber W. Physical examination, central venous pressure, and chest radiography for the prediction of transpulmonary thermodilution-derived hemodynamic parameters in critically ill patients: a prospective trial. J Crit Care. 2011;26:402–10. doi:10.1016/j.jcrc.2010.11.001.

    Article  PubMed  Google Scholar 

  10. Wo CC, Shoemaker WC, Appel PL, Bishop MH, Kram HB, Hardin E. Unreliability of blood pressure and heart rate to evaluate cardiac output in emergency resuscitation and critical illness. Crit Care Med. 1993;21:218–23.

    Article  CAS  PubMed  Google Scholar 

  11. Nowak RM, Sen A, Garcia AJ, Wilkie H, Yang JJ, Nowak MR, Moyer ML. The inability of emergency physicians to adequately clinically estimate the underlying hemodynamic profiles of acutely ill patients. Am J Emerg Med. 2012;30:954–60. doi:10.1016/j.ajem.2011.05.021.

    Article  PubMed  Google Scholar 

  12. Meregalli A, Oliveira RP, Friedman G. Occult hypoperfusion is associated with increased mortality in hemodynamically stable, high-risk, surgical patients. Crit Care. 2004;8:R60–5. doi:10.1186/cc2423.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Marik PE, Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med. 2013;41:1774–81. doi:10.1097/CCM.0b013e31828a25fd.

    Article  PubMed  Google Scholar 

  14. Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, Jaeschke R, Mebazaa A, Pinsky MR, Teboul JL, Vincent JL, Rhodes A. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Med. Intensive Care Med. 2014;40:1795–815. doi:10.1007/s00134-014-3525-z.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Potter BJ, Deverenne B, Doucette S, Fergusson D, Magder S. Cardiac output responses in a flow-driven protocol of resuscitation following cardiac surgery. J Crit Care. 2013;28:265–9. doi:10.1016/j.jcrc.2012.09.008.

    Article  PubMed  Google Scholar 

  16. Bellomo R, Uchino S. Cardiovascular monitoring tools: use and misuse. Curr Opin Crit Care. 2003;9:225–9.

    Article  PubMed  Google Scholar 

  17. Ospina-Tascon GA, Cordioli RL, Vincent JL. What type of monitoring has been shown to improve outcomes in acutely ill patients? Intensive Care Med. 2008;34:800–20. doi:10.1007/s00134-007-0967-6.

    Article  PubMed  Google Scholar 

  18. Greenberg SB, Murphy GS, Vender JS. Current use of the pulmonary artery catheter. Curr Opin Crit Care. 2009;15:249–53. doi:10.1097/MCC.0b013e32832b302b.

    Article  PubMed  Google Scholar 

  19. Thompson JP, Mahajan RP. Monitoring the monitors–beyond risk management. Br J Anaesth. 2006;97:1–3. doi:10.1093/bja/ael139.

    Article  CAS  PubMed  Google Scholar 

  20. Robin ED, McCauley RF. Monitor wizards can be dangerous. Chest. 1998;114:1511–3.

    Article  CAS  PubMed  Google Scholar 

  21. Parker MM. Goals for fluid resuscitation: a real challenge. Crit Care Med. 2007;35:295–6. doi:10.1097/01.ccm.0000251846.58645.5a.

    Article  PubMed  Google Scholar 

  22. Critchley LA, Critchley JA. A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput. 1999;15:85–91.

    Article  CAS  PubMed  Google Scholar 

  23. Steingrub JS, Celoria G, Vickers-Lahti M, Teres D, Bria W. Therapeutic impact of pulmonary artery catheterization in a medical/surgical ICU. Chest. 1991;99:1451–5.

    Article  CAS  PubMed  Google Scholar 

  24. Mimoz O, Rauss A, Rekik N, Brun-Buisson C, Lemaire F, Brochard L. Pulmonary artery catheterization in critically ill patients: a prospective analysis of outcome changes associated with catheter-prompted changes in therapy. Crit Care Med. 1994;22:573–9.

    Article  CAS  PubMed  Google Scholar 

  25. Marinelli WA, Weinert CR, Gross CR, Knoedler JP Jr, Bury CL, Kangas JR, Leatherman JW. Right heart catheterization in acute lung injury: an observational study. Am J Respir Crit Care Med. 1999;160:69–76. doi:10.1164/ajrccm.160.1.9711079.

    Article  CAS  PubMed  Google Scholar 

  26. Vincent JL, Pinsky MR, Sprung CL, Levy M, Marini JJ, Payen D, Rhodes A, Takala J. The pulmonary artery catheter: in medio virtus. Crit Care Med. 2008;36:3093–6. doi:10.1097/CCM.0b013e31818c10c7.

    Article  PubMed  Google Scholar 

  27. Richard C, Monnet X, Teboul JL. Pulmonary artery catheter monitoring in 2011. Curr Opin Crit Care. 2011;17:296–302. doi:10.1097/MCC.0b013e3283466b85.

    Article  PubMed  Google Scholar 

  28. Shah MR, Hasselblad V, Stevenson LW, Binanay C, O’Connor CM, Sopko G, Califf RM. Impact of the pulmonary artery catheter in critically ill patients: meta-analysis of randomized clinical trials. JAMA. 2005;294:1664–70. doi:10.1001/jama.294.13.1664.

    Article  CAS  PubMed  Google Scholar 

  29. Vincent JL, Rhodes A, Perel A, Martin GS, Della Rocca G, Vallet B, Pinsky MR, Hofer CK, Teboul JL, de Boode WP, Scolletta S, Vieillard-Baron A, De Backer D, Walley KR, Maggiorini M, Singer M. Clinical review: Update on hemodynamic monitoring–a consensus of 16. Crit Care. 2011;15:229. doi:10.1186/cc10291.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Beale RJ, Hollenberg SM, Vincent JL, Parrillo JE. Vasopressor and inotropic support in septic shock: an evidence-based review. Crit Care Med. 2004;32:S455–65.

    Article  PubMed  Google Scholar 

  31. Cecconi M, Parsons AK, Rhodes A. What is a fluid challenge? Curr Opin Crit Care. 2011;17:290–5. doi:10.1097/MCC.0b013e32834699cd.

    Article  PubMed  Google Scholar 

  32. Michard F, Alaya S, Zarka V, Bahloul M, Richard C, Teboul JL. Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest. 2003;124:1900–8.

    Article  PubMed  Google Scholar 

  33. Perel A. Extravascular lung water and the pulmonary vascular permeability index may improve the definition of ARDS. Crit Care. 2013;17:108. doi:10.1186/cc11918.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Vincent JL, Ince C, Bakker J. Clinical review: circulatory shock—an update: a tribute to Professor Max Harry Weil. Crit Care. 2012;16:239. doi:10.1186/cc11510.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hanson J, Lam SW, Alam S, Pattnaik R, Mahanta KC, Uddin Hasan M, Mohanty S, Mishra S, Cohen S, Day N, White N, Dondorp A. The reliability of the physical examination to guide fluid therapy in adults with severe falciparum malaria: an observational study. Malar J. 2013;12:348. doi:10.1186/1475-2875-12-348.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Duan J, Cong LH, Wang H, Zhang Y, Wu XJ, Li G. Clinical evaluation compared to the pulse indicator continuous cardiac output system in the hemodynamic assessment of critically ill patients. Am J Emerg Med. 2014;32:629–33. doi:10.1016/j.ajem.2014.03.023.

    Article  PubMed  Google Scholar 

  37. Dawson NV, Connors AF Jr, Speroff T, Kemka A, Shaw P, Arkes HR. Hemodynamic assessment in managing the critically ill: is physician confidence warranted? Med Decis Making. 1993;13:258–66.

    Article  CAS  PubMed  Google Scholar 

  38. Hilton AK, Bellomo R. A critique of fluid bolus resuscitation in severe sepsis. Crit Care. 2012;16:302. doi:10.1186/cc11154.

    Article  PubMed  PubMed Central  Google Scholar 

  39. De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med. 2005;31:517–23. doi:10.1007/s00134-005-2586-4.

    Article  PubMed  Google Scholar 

  40. Trof RJ, Danad I, Reilingh MW, Breukers RM, Groeneveld AB. Cardiac filling volumes versus pressures for predicting fluid responsiveness after cardiovascular surgery: the role of systolic cardiac function. Crit Care. 2011;15:R73. doi:10.1186/cc10062.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37:2642–7. doi:10.1097/CCM.0b013e3181a590da.

    Article  PubMed  Google Scholar 

  42. Pino-Sanchez F, Lara-Rosales R, Guerrero-Lopez F, Chamorro-Marin V, Navarrete-Navarro P, Carazo-de la Fuente E, Fernandez-Mondejar E. Influence of extravascular lung water determination in fluid and vasoactive therapy. J Trauma. 2009;67:1220–4. doi:10.1097/TA.0b013e3181a5f1f1.

    Article  CAS  PubMed  Google Scholar 

  43. Roizen MF, Toledano A. Technology assessment and the “learning contamination” bias. Anesth Analg. 1994;79:410–2.

    Article  CAS  PubMed  Google Scholar 

  44. Young D, Griffiths J. Clinical trials of monitoring in anaesthesia, critical care and acute ward care: a review. Br J Anaesth. 2006;97:39–45. doi:10.1093/bja/ael107.

    Article  CAS  PubMed  Google Scholar 

  45. Vincent JL. We should abandon randomized controlled trials in the intensive care unit. Crit Care Med. 2010;38:S534–8. doi:10.1097/CCM.0b013e3181f208ac.

    Article  PubMed  Google Scholar 

  46. Perner A, Myburgh J. Ten ‘short-lived’ beliefs in intensive care medicine. Intensive Care Med. 2015;. doi:10.1007/s00134-015-3733-1.

    Google Scholar 

  47. Tobin MJ (2008) Counterpoint: evidence-based medicine lacks a sound scientific base. Chest 133:1071–1074; discussion 1074-1077. doi:10.1378/chest.08-0077.

  48. Tonelli MR, Curtis JR, Guntupalli KK, Rubenfeld GD, Arroliga AC, Brochard L, Douglas IS, Gutterman DD, Hall JR, Kavanagh BP, Mancebo J, Misak CJ, Simpson SQ, Slutsky AS, Suffredini AF, Thompson BT, Ware LB, Wheeler AP, Levy MM. An official multi-society statement: the role of clinical research results in the practice of critical care medicine. Am J Respir Crit Care Med. 2012;185:1117–24. doi:10.1164/rccm.201204-0638ST.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thankfully acknowledge the contribution of the staff of the participating ICUs, and in particular the contribution of the following physicians in data collection: G. Kourakin and S. Preisman, Sheba Medical Center, Tel Aviv University, Israel; H. Dits, K. Schoonheydt, N. Van Regenmortel, and I. De laet, Ziekenhuis Netwerk Antwerpen, Campus ZNA Stuivenberg, Antwerp, Belgium; A. Aguilar, Hospital Clinico Universitario, Valencia, Spain; A. Smetkin, Northern State Medical University, Arkhangelsk, Russian Federation; C. Karvellas, King’s College Hospital, London, UK; A. Haller, Kantonsspital Winterthur, and M. Lang, Spital Frauenfeld, Switzerland.

Conflict of interests

AP, BS, JLT, MLNGM, JB, EF-M, MK, JW, and MM are members of the Medical Advisory Board of Pulsion Medical Systems SE (Feldkirchen, Germany) and received honoraria and refunds of travel expenses from Pulsion Medical Systems SE (Feldkirchen, Germany). However, the study was not sponsored nor funded by this company or any other external source. RL has no potential conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Saugel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perel, A., Saugel, B., Teboul, JL. et al. The effects of advanced monitoring on hemodynamic management in critically ill patients: a pre and post questionnaire study. J Clin Monit Comput 30, 511–518 (2016). https://doi.org/10.1007/s10877-015-9811-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-015-9811-7

Keywords

Navigation