Skip to main content
Log in

An accelerated continuous greedy algorithm for maximizing strong submodular functions

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

An accelerated continuous greedy algorithm is proposed for maximization of a special class of non-decreasing submodular functions \(f:2^{X} \rightarrow \mathfrak {R}_{+}\) subject to a matroid constraint with a \(\frac{1}{c} (1 - e^{-c} - \varepsilon ) \) approximation for any \(\varepsilon > 0\), where \(c\) is the curvature with respect to the optimum. Functions in the special class of submodular functions satisfy the criterion \(\forall A, B \subseteq X,\, \forall j \in X {\setminus } (A \cup B)\), \(\triangle f_j(A,B) \mathop {=}\limits ^{\Delta } f(A \cup \{j\}) + f(B \cup \{j\}) - f((A \cap B) \cup \{j\}) - f(A \cup B \cup \{j\}) - [f(A) + f(B) - f(A \cap B) - f(A \cup B)] \le 0\). As an alternative to the standard continuous greedy algorithm, the proposed algorithm can substantially reduce the computational expense by removing redundant computational steps and, therefore, is able to efficiently handle the maximization problems for this special class of submodular functions. Examples of such functions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. A polytope \(P\) is down-monotone if for all \(\varvec{x},\varvec{y} \in [0,1]^X\) satisfying \(\varvec{x} \preceq \varvec{y}\) and \(\varvec{y} \in P\), it holds that \(\varvec{x} \in P\); \(P\) is solvable if we can maximize linear functions over \(P\) in polynomial time (Dughmi 2009)

  2. An independent set \(Q_i = \{s_1, \ldots ,s_{i-1}, r_i,s_{i+1},\ldots ,s_q \}\) is submax-weight, if for all \(r_i^\prime \in X {\setminus } Q \setminus \{r_i\}\), \(\nu ^{\prime \prime } \cdot \nabla F \le \nu ^\prime \cdot \nabla F < \nu \cdot \nabla F\), where \(\nu = \mathbf 1 _Q, \nu ^{\prime } = \mathbf 1 _{Q_i}, \nu ^{\prime \prime } = \mathbf 1 _{Q_i^{\prime } = \{s_1, \ldots ,s_{i-1}, r_i^{\prime }, s_{i+1},\ldots ,s_q \} }\)

  3. This proof was kindly provided by a referee.

  4. This simplified proof was kindly provided by a referee.

  5. The idea of this proof was kindly provided by a referee.

References

  • Ageev A, Sviridenko M (2004) Pipage rounding: a new method of constructing algorithms with proven performance guarantee. J Comb Optim 8(3):307–328

    Article  MATH  MathSciNet  Google Scholar 

  • Brualdi RA (1969) Comments on bases in dependence structures. Bull Aust Math Soc 1:161–167

    Article  MATH  MathSciNet  Google Scholar 

  • Calinescu G, Chekuri M, Vondrák J (2011) Maximizing a submodular set function subject to a matroid constraint. SIAM J Comput 40(6):1740–1766

    Article  MATH  MathSciNet  Google Scholar 

  • Crama Y, Hammer PL, Holzman R (1989) A characterization of a cone of pseudo-boolean functions via supermodularity-type inequalities. Quantitative Methoden in den Wirtschaftswissenschaften. Springer, Berlin, pp 53–55

    Google Scholar 

  • Dughmi S (2009) Submodular functions: extensions, distributions, and algorithms a survey. CORR 3:1880–1889

    Google Scholar 

  • Fadaei S, Fazli M, Safari M (2011) Maximizing non-monotone submodular set functions subject to different constraints: combined algorithms. Oper Res Lett 39(6):447–451

    Article  MATH  MathSciNet  Google Scholar 

  • Feige U (1998) A threshold of \(\ln n\) for approximation set cover. JACM 45(4):634–652

    Article  MATH  MathSciNet  Google Scholar 

  • Filmus Y, Ward J (2012a) A tight combinatorial algorithm for submodular maximization subject to a matroid constraint. In: Proceedings of IEEE FOCS, pp 659–668

  • Filmus Y, Ward J (2012b) The power of local search: maximum coverage over a matroid. In: 29th international symposium on theoretical aspects of computer science, pp 601–612

  • Fisher ML, Nemhauser GL, Wolsey LA (1978) An analysis of approximations for maximizing submodular set functions—II. Math Program Study 8:73–87

    Article  MathSciNet  Google Scholar 

  • Foldes S, Hammer PL (2005) Submodularity, supermodularity, and higher-order monotonicites of pseudo-boolean functions. Math Oper Res 30(2):453–461

    Article  MATH  MathSciNet  Google Scholar 

  • Khot S, Lipton R, Markakis E, Naor J (2008) Inapproximability results for combinatorial auctions with submodular utility functions. Algorithmica 52(1):3–18

    Article  MATH  MathSciNet  Google Scholar 

  • Kulik A, Shachnai H, Tamir T (2009) Maximizing submodular set functions subject to multiple linear constraints. In: Proceedings of the annual ACM-SIAM symposium on discrete algorithms, pp 545–554

  • Lehmann B, Lehmann DJ, Nisan N (2006) Combinatorial auctions with decreasing marginal utilities. Games Econ Behav 55:270–296

    Article  MATH  MathSciNet  Google Scholar 

  • Mirrokni V, Schapira M , Vondrák J (2008) Tight information-theoretic lower bounds for welfare maximization in combinatorial auctions. In: Proceedings of ACM EC, pp 70–77

  • Nembauser GL, Wolsey LA (1978) Best algorithms for approximating the maximum of a submodular set function. Math Oper Res 3(3):177–188

    Article  MathSciNet  Google Scholar 

  • Nemhauser GL, Wolsey LA, Fisher ML (1978) An analysis of approximations for maximizing submodular set functions-I. Math Program 14(1):265–294

    Article  MATH  MathSciNet  Google Scholar 

  • Salek M, Shayandeh S, Kempe D (2010) You share, I share: network effects and economic incentives in P2P file-sharing systems. In: Proceedings of the 6th international conference on internet and network, economics, pp 354–365

  • Sviridenko M (2004) A note on maximizing a submodular set function subject to a knapsack constraint. Oper Res Lett 32(1):41–43

    Article  MATH  MathSciNet  Google Scholar 

  • Vondrák J (2008) Optimal approximation for the submodular welfare problem in the value oracle model. In: Proceedings of the annual ACM symposium on theory of, computing, pp 67–74

  • Vondrák J (2010) Submodularity and curvature: the optimal algorithm. In: RIMS Kokyuroku Bessatsu B23, pp 253–266

Download references

Acknowledgments

The first author is thankful for having communicated with Dr Jan Vondrák to discuss the continuous greedy algorithm. The authors also wish to acknowledge the anonymous reviwers/referees for their constructive comments and suggestions for this work. This work was supported in part by the NSFC (No.61135001) and the AFOSR Grant (FA2386-13-1-4080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengfu Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Moran, B., Wang, X. et al. An accelerated continuous greedy algorithm for maximizing strong submodular functions. J Comb Optim 30, 1107–1124 (2015). https://doi.org/10.1007/s10878-013-9685-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-013-9685-x

Keywords

Navigation