Skip to main content
Log in

Degree bounded bottleneck spanning trees in three dimensions

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

The geometric \(\delta \)-minimum spanning tree problem (\(\delta \)-MST) is the problem of finding a minimum spanning tree for a set of points in a normed vector space, such that no vertex in the tree has a degree which exceeds \(\delta \), and the sum of the lengths of the edges in the tree is minimum. The similarly defined geometric \(\delta \)-minimum bottleneck spanning tree problem (\(\delta \)-MBST), is the problem of finding a degree bounded spanning tree such that the length of the longest edge is minimum. For point sets that lie in the Euclidean plane, both of these problems have been shown to be NP-hard for certain specific values of \(\delta \). In this paper, we investigate the \(\delta \)-MBST problem in 3-dimensional Euclidean space and 3-dimensional rectilinear space. We show that the problems are NP-hard for certain values of \(\delta \), and we provide inapproximability results for these cases. We also describe new approximation algorithms for solving these 3-dimensional variants, and then analyse their worst-case performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Agarwal PK, Edelsbrunner H, Schwarzkopf O, Welzl E (1991) Euclidean minimum spanning trees and bichromatic closest pairs. Discrete Comput Geom 6(3):407–422

    Article  MathSciNet  MATH  Google Scholar 

  • Akyildiz IF, Pompili D, Melodia T (2005) Underwater acoustic sensor networks: research challenges. Ad Hoc Netw 3(3):257–279

    Article  Google Scholar 

  • Andersen PJ, Ras CJ (2016) Minimum bottleneck spanning trees with degree bounds. Networks 68(4):302–314

    Article  MathSciNet  MATH  Google Scholar 

  • Andersen PJ, Ras CJ (2019) Algorithms for Euclidean degree bounded spanning tree problems. Int J Comput Geom Appl 29(02):121–160

    Article  MathSciNet  MATH  Google Scholar 

  • Arora S (1998) Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J ACM 45(5):753–782

    Article  MathSciNet  MATH  Google Scholar 

  • Berman O, Einav D, Handler G (1990) The constrained bottleneck problem in networks. Oper Res 38(1):178–181

    Article  MathSciNet  MATH  Google Scholar 

  • Beardwood J, Halton JH, Hammersley JM (1959) The shortest path through many points. Math Proc Camb Philos Soc 55(4):299–327

    Article  MathSciNet  MATH  Google Scholar 

  • Brazil M, Ras CJ, Thomas DA (2012) The bottleneck 2-connected \(k\)-Steiner network problem for \(k \ge 2\). Discrete Appl Math 160(7–8):1028–1038

    Article  MathSciNet  MATH  Google Scholar 

  • Camerini PM (1978) The min-max spanning tree problem and some extensions. Inf Process Lett 7(1):10–14

    Article  MathSciNet  MATH  Google Scholar 

  • Chan TM (2004) Euclidean bounded-degree spanning tree ratios. Discrete Comput Geom 32(2):177–194

    Article  MathSciNet  MATH  Google Scholar 

  • Cieslik D (1991) The 1-Steiner-minimal-tree problem in Minkowski-spaces. Optimization 22(2):291–296

    Article  MathSciNet  MATH  Google Scholar 

  • Deo N, Micikevicius P (1999) A heuristic for a leaf constrained minimum spanning tree problem. Congr Numer 141:61–272

    MathSciNet  MATH  Google Scholar 

  • Fampa M, Anstreicher KM (2008) An improved algorithm for computing Steiner minimal trees in Euclidean \(d\)-space. Discrete Optim 5(2):530–540

    Article  MathSciNet  MATH  Google Scholar 

  • Francke A, Hoffmann M (2009) The Euclidean degree-4 minimum spanning tree problem is NP-hard. In: Proceedings of the twenty-fifth annual symposium on computational geometry, ACM, pp 179–188

  • Garey MR, Johnson DS (1979) Computers and Intractability: a guide to the theory of NP-completeness. Freeman W.H., New York

    MATH  Google Scholar 

  • Graham RL, Hell P (1985) On the history of the minimum spanning tree problem. Ann Hist Comput 7(1):43–57

    Article  MathSciNet  MATH  Google Scholar 

  • Khuller S, Raghavachari B, Young N (1996) Low-degree spanning trees of small weight. SIAM J Comput 25(2):355–368

    Article  MathSciNet  MATH  Google Scholar 

  • Könemann J, Ravi R (2002) A matter of degree: Improved approximation algorithms for degree-bounded minimum spanning trees. SIAM J Comput 31(6):1783–1793

    Article  MathSciNet  MATH  Google Scholar 

  • Kruskal JB (1956) On the shortest spanning subtree of a graph and the traveling salesman problem. Proc Am Math Soc 7(1):48–50

    Article  MathSciNet  MATH  Google Scholar 

  • Larman DG, Zong C (1999) On the kissing numbers of some special convex bodies. Discrete Comput Geom 21(2):233–242

    Article  MathSciNet  MATH  Google Scholar 

  • Martin H, Swanepoel KJ (2006) Low-degree minimal spanning trees in normed spaces. Appl Math Lett 19(2):122–125

    Article  MathSciNet  MATH  Google Scholar 

  • Monma C, Suri S (1992) Transitions in geometric minimum spanning trees. Discrete Comput Geom 8(3):265–293

    Article  MathSciNet  MATH  Google Scholar 

  • Papadimitriou CH (1977) The Euclidean travelling salesman problem is NP-complete. Theor Comput Sci 4(3):237–244

    Article  MATH  Google Scholar 

  • Papadimitriou CH, Vazirani UV (1984) On two geometric problems related to the travelling salesman problem. J Algorithms 5(2):231–246

    Article  MathSciNet  MATH  Google Scholar 

  • Prim RC (1957) Shortest connection networks and some generalizations. Bell Syst Tech J 36(6):1389–1401

    Article  Google Scholar 

  • Punnen AP, Nair KPK (1996) An improved algorithm for the constrained bottleneck spanning tree problem. INFORMS J Comput 8(1):41–44

    Article  MATH  Google Scholar 

  • Ravi R, Goemans MX (1996) The constrained minimum spanning tree problem. In: Scandinavian Workshop on Algorithm Theory, Springer, pp 66–75

  • Robins G, Salowe JS (1995) Low-degree minimum spanning trees. Discrete Comput Geom 14(2):151–165

    Article  MathSciNet  MATH  Google Scholar 

  • Sarrafzadeh M, Wong CK (1992) Bottleneck Steiner trees in the plane. IEEE Trans Comput 3:370–374

    Article  MathSciNet  MATH  Google Scholar 

  • Smith WD (1992) How to find Steiner minimal trees in Euclidean \(d\)-space. Algorithmica 7(1–6):137–177

    Article  MathSciNet  MATH  Google Scholar 

  • Talata I (1999) The translative kissing number of tetrahedra is 18. Discrete Comput Geom 22(2):231–248

    Article  MathSciNet  MATH  Google Scholar 

  • Tassiulas L (1997) Worst case length of nearest neighbor tours for the Euclidean traveling salesman problem. SIAM J Discrete Math 10(2):171–179

    Article  MathSciNet  MATH  Google Scholar 

  • Thomas DA, Wen JF (2014) Euclidean Steiner trees optimal with respect to swapping 4-point subtrees. Optim Lett 8(4):1337–1359

    Article  MathSciNet  MATH  Google Scholar 

  • Toth LF (1975) On Hadwiger numbers and Newton numbers of a convex body. Studia Sci Math Hungar 10:111–115

    MathSciNet  MATH  Google Scholar 

  • Vaidya PM (1988) Minimum spanning trees in \(k\)-dimensional space. SIAM J Comput 17(3):572–582

    Article  MathSciNet  MATH  Google Scholar 

  • Wu BY, Chao KM (2004) Spanning trees and optimization problems. Chapman and Hall, New York

    Book  MATH  Google Scholar 

  • Yao ACC (1982) On constructing minimum spanning trees in \(k\)-dimensional spaces and related problems. SIAM J Comput 11(4):721–736

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. Andersen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andersen, P.J., Ras, C.J. Degree bounded bottleneck spanning trees in three dimensions. J Comb Optim 39, 457–491 (2020). https://doi.org/10.1007/s10878-019-00490-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-019-00490-2

Keywords

Navigation