Skip to main content
Log in

Null Controllability of Networks Systems

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

The aim of this paper is to study the null controllability of an abstract boundary linear control systems. We then transform the problem of the null controllability, where the control operator is unbounded, to a problem of the null controllability, where the control operator is bounded. An application to flows in networks controlled in a single vertex is applied, where a characterization of the null controllability is given by a matrix equality. Moreover, the construction of the control function is specified. Illustrative numerical examples are further provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boulite S, Bouslous H, El Azzouzi M, Maniar L. Approximate positive controllability of positive boundary control systems. Positivity 2014;18(2): 375–393.

    Article  MathSciNet  MATH  Google Scholar 

  2. Chu J, Shang P, Wang Z. Controllability and stabilization of a conservation law modeling a highly re-entrant manufacturing system. Nonlinear Anal 2019; 189:111–577.

    Article  MathSciNet  MATH  Google Scholar 

  3. Coron J-M. 2007. Control and nonlinearity No. 136 American Mathematical Soc.

  4. Curtain RF, Zwart H. An introduction to infinite-dimensional linear systems theory, vol 21. Berlin: Springer Science & Business Media; 2012.

    Google Scholar 

  5. El Azzouzi M, Bouslous H, Maniar L, Boulite S. Constrained approximate controllability of boundary control systems. IMA J Math Control Inf 2016; 33(3):669–683.

    Article  MathSciNet  MATH  Google Scholar 

  6. Enge K-J, Fijavž MK. Exact and positive controllability of boundary control systems. Netw Heterog Media 2017;12(2):319–337.

    Article  MathSciNet  MATH  Google Scholar 

  7. Engel K-J, Fijavž MK, Klöss B, Nagel R, Sikolya E. Maximal controllability for boundary control problems. Appl Math Optim 2010;62(2): 205–227.

    Article  MathSciNet  MATH  Google Scholar 

  8. Engel K-J, Fijavž MK, Nagel R, Sikolya E. Vertex control of flows in networks. Netw Heterog Media 2008;3(4):709.

    Article  MathSciNet  MATH  Google Scholar 

  9. Engel K-J, Nagel R. One-parameter semigroups for linear evolution equations. Semigroup forum, vol 63. Springer; 2001. p. 278–280.

  10. Fattorini HO. Boundary control systems. SIAM Journal on Control 1968;6(3):349–385.

    Article  MathSciNet  MATH  Google Scholar 

  11. Fattorini HO, Russell DL. Exact controllability theorems for linear parabolic equations in one space dimension. Arch Ration Mech Anal 1971;43(4):272–292.

    Article  MathSciNet  MATH  Google Scholar 

  12. Fursikov AV, Imanuvilov OY. 1996. Controllability of evolution equations. No.34 Seoul National University.

  13. Gordeziani D, Kupreishvli M, Meladze H, Davitashvili T. On the solution of boundary value problem for differential equations given in graphs. Appl Math Lett 2008;13:80–91.

    MathSciNet  MATH  Google Scholar 

  14. Greiner G. Perturbing the boundary-conditions of a generator. Houst J Math 1987;13(2):213–229.

    MathSciNet  MATH  Google Scholar 

  15. Greiner G. Linearized stability for hyperbolic evolution equations with semilinear boundary conditions. Semigroup forum, vol 38. Springer; 1989. p. 203–214.

  16. Jones BF Jr. A fundamental solution for the heat equation which is supported in a strip. J Math Anal Appl 1977;60(2):314–324.

    Article  MathSciNet  MATH  Google Scholar 

  17. Kramar M, Sikolya E. Spectral properties and asymptotic periodicity of flows in networks. Math Z 2005;249(1):139–162.

    Article  MathSciNet  MATH  Google Scholar 

  18. Krause S. 1990. Zur theorie linearer randwertkontrollen. PhD thesis, Uitgever niet vastgesteld.

  19. Lebeau G, Robbiano L. Contrôle exact de léquation de la chaleur. Commun Partial Differ Equ 1995;20(1-2):335–356.

    Article  MATH  Google Scholar 

  20. Leugering G, et al. Domain decomposition of an optimal control problem for semi-linear elliptic equations on metric graphs with application to gas networks. Appl Math 2017;8(08):1074.

    Article  Google Scholar 

  21. Leugering G, Mophou G, Moutamal M, Warma M. 2021. Optimal control problems of parabolic fractional sturm liouville equations in a star graph. arXiv:2105.01720.

  22. Li T, Yu L. Local exact one-sided boundary null controllability of entropy solutions to a class of hyperbolic systems of balance laws. SIAM J Control Optim 2019;57(1):610–632.

    Article  MathSciNet  MATH  Google Scholar 

  23. Littman W. Boundary control theory for hyperbolic and parabolic partial differential equations with constant coefficients. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 1978;5(3):567–580.

    MathSciNet  MATH  Google Scholar 

  24. Lumer G. Connecting of local operators and evolution equations on networks. potential theory copenhagen 1979. Springer; 1980. p. 219–234.

  25. Mehandiratta V, Mehra M, Leugering G. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge: a study of fractional calculus on metric graph. Netw Heterog Media 2021;16(2):155.

    Article  MathSciNet  MATH  Google Scholar 

  26. Nicaise S. Some results on spectral theory over networks, applied to nerve impulse transmission. Polynomes orthogonaux et applications. Springer; 1985. p. 532–541.

  27. Pandolfi L. Generalized control systems boundary control systems and delayed control systems. Math Control Signals Syst 1990;3(2):165–181.

    Article  MathSciNet  MATH  Google Scholar 

  28. Pavlov BS, Faddeev M. Model of free electrons and the scattering problem. Teor Mat Fiz 1983;55(2):257–268.

    Article  MathSciNet  Google Scholar 

  29. Rosier L. A survey of controllability and stabilization results for partial differential equations. Journal Européen des Systemes Automatisés 2007;41(3/4):365.

    Article  Google Scholar 

  30. Russell DL. Boundary value control of the higher-dimensional wave equation. SIAM Journal on Control 1971;9(1):29–42.

    Article  MathSciNet  MATH  Google Scholar 

  31. Slemrod M. Stabilization of boundary control systems. J Differ Equ 1976;22(2):402–415.

    Article  MathSciNet  MATH  Google Scholar 

  32. Thieme HR. Semiflows generated by lipschitz perturbations of non-densely defined operators. Differ Integral Equ 1990;3(6):1035–1066.

    MathSciNet  MATH  Google Scholar 

  33. Tucsnak M, Weiss G. Observation and control for operator semigroups. Berlin: Springer Science & Business Media; 2009.

    Book  MATH  Google Scholar 

  34. von Below J. Sturm-liouville eigenvalue problems on networks. Math Methods Appl Sci 1988;10(4):383–395.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the referee for the constructive comments and recommendations which definitely help to improve the readability and quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed El Azzouzi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Azzouzi, M., Lourini, A. & Laabissi, M. Null Controllability of Networks Systems. J Dyn Control Syst 29, 855–872 (2023). https://doi.org/10.1007/s10883-022-09623-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-022-09623-z

Keywords

Mathematics Subject Classification (2010)

Navigation