Skip to main content
Log in

Sub-Lorentzian distance and spheres on the Heisenberg group

  • Original Research
  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

The left-invariant sub-Lorentzian problem on the Heisenberg group is considered. An optimal synthesis is constructed, the sub-Lorentzian distance and spheres are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. where \(\pi \, : \, T^{*}M \rightarrow {M}\) is the canonical projection, \(\pi (\lambda ) = q, \lambda \in T^{*}_{q}M\)

  2. where \(\vec {h}(\lambda )\) is the Hamiltonian vector field on \(T^*M\) with the Hamiltonian function \(h(\lambda )\)

  3. The set \(\{(h_1, h_2) \in (\mathbb {R}^2)^* \mid h_1 \le - |h_2|\}\) is the polar set to U in the sense of convex analysis.

  4. The symplectic foliation is the decomposition of the dual of a Lie algebra into coadjoint orbits, see e.g. [2]

References

  1. Vershik AM., Gershkovich VY. Nonholonomic Dynamical Systems. Geometry of distributions and variational problems. (Russian) In: Itogi Nauki i Tekhniki:Sovremennye Problemy Matematiki, Fundamental’nyje Napravleniya, vol. 16, Moscow: VINITI; 1987, pp. 5–85. (English translation In: Encyclopedia of Math. Sci. vol. 16, Dynamical Systems 7, Springer Verlag.)

  2. Jurdjevic V. Geometric control theory. Cambridge University Press; 1997.

  3. Montgomery R. A tour of subriemannian geometries, their geodesics and applications. Amer Math Soc. 2002.

  4. Agrachev A, Sachkov Yu. Control theory from the geometric viewpoint. Berlin, New York, Tokyo: Springer-Verlag; 2004.

    Book  MATH  Google Scholar 

  5. Agrachev A., Barilari D., Boscain U. A Comprehensive Introduction to sub-Riemannian Geometry from Hamiltonian viewpoint. Cambridge University Press, 2019.

  6. Sachkov Yu. Introduction to geometric control, Springer, 2022.

  7. Sachkov Yu. Left-invariant optimal control problems on Lie groups: classification and problems integrable by elementary functions. Russian Math Surv. 2022;77(1):99–163.

    Article  MathSciNet  MATH  Google Scholar 

  8. Sachkov Yu. Left-invariant optimal control problems on Lie groups integrable by elliptic functions. Russian Math Surv. 2023;78(469):67–166.

    MathSciNet  Google Scholar 

  9. Sachkov YuL., Sachkova EF. Sub-Lorentzian problem on the Heisenberg group. Math Notes. 2023;113(1):160–163.

  10. Grochowski M. Geodesics in the sub-Lorentzian geometry. Bull Polish Acad Sci Math. 2002;50:.

  11. Grochowski M. Normal forms of germs of contact sub-Lorentzian structures on \(\mathbb{R}^3\). Differentiability of the sub-Lorentzian distance. J Dynam Control Syst. 2003;9(4):.

  12. Grochowski M. Properties of reachable sets in the sub-Lorentzian geometry. J Geom Phys. 2009;59(7):885–900.

    Article  MathSciNet  MATH  Google Scholar 

  13. Grochowski M. Reachable sets for contact sub-Lorentzian metrics on \(\mathbb{R}^3\). Application to control affine systems with the scalar input. J Math Sci (N.Y.). 2011;177(3):383–394.

  14. Grochowski M. On the Heisenberg sub-Lorentzian metric on \(\mathbb{R}^3\), Geometric singularity theory, Banach center publications, Institute of mathematics, vol. 65. Warszawa: Polish academy of sciences; 2004.

    Google Scholar 

  15. Grochowski M. Reachable sets for the Heisenberg sub-Lorentzian structure on \(\mathbb{R}^3\). An estimate for the distance function. J Dyn Contr Syst. 2006;12(2):145–160.

  16. Chang D-C, Markina I, Vasil’ev A. Sub-Lorentzian geometry on anti-de Sitter space. J Math Pures Appl. 2008;90:82–110.

    Article  MathSciNet  MATH  Google Scholar 

  17. Korolko A, Markina I. Nonholonomic Lorentzian geometry on some H-type groups. J Geom Anal. 2009;19:864–89.

    Article  MathSciNet  MATH  Google Scholar 

  18. Grong E, Vasil-ev A. Sub-Riemannian and sub-Lorentzian geometry on \(SU(1, 1)\) and on its universal cover. J Geom Mech. 2011;3(2):225–60.

    Article  MathSciNet  MATH  Google Scholar 

  19. Grochowski M, Medvedev A, Warhurst B. 3-dimensional left-invariant sub-Lorentzian contact structures. Dif Geom Appl. 2016;49:142–66.

    Article  MathSciNet  MATH  Google Scholar 

  20. Abels H, Vinberg EB. On free two-step nilpotent Lie semigroups and inequalities between random variables. J Lie Theory. 2019;29(1):79–87.

    MathSciNet  MATH  Google Scholar 

  21. Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mishchenko EF. Mathematical theory of optimal processes. New York/London: Wiley; 1962.

    MATH  Google Scholar 

  22. Hakavuori E, Le Donne E. Non-minimality of corners in subriemannian geometry. Invent Math. 2016;206(3):693–704.

    Article  MathSciNet  MATH  Google Scholar 

  23. Lokutsievskiy LV., Podobryaev AV. Existence of length maximizers in sub-Lorentzian problems on nilpotent Lie groups. in preparation.

  24. Sachkov YuL. Asymptotics of sub-Lorentzian distance at the Heisenberg group at the boundary of the attainable set. in preparation.

  25. Wald RM. General relativity. Chicago Press: Univ; 1984.

    Book  MATH  Google Scholar 

  26. Beem JK., Ehrlich PE., Easley KL. Global Lorentzian Geometry. Monographs Textbooks Pure Appl Math. 202, Marcel Dekker Inc. (1996).

  27. Müller O, Sànchez M. An Invitation to Lorentzian Geometry. Jahresber Dtsch Math Ver. 2014;115:153–83.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri L. Sachkov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Work supported by Russian Scientific Foundation, grant 22-11-00140, https://rscf.ru/project/22-11-00140/.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachkov, Y.L., Sachkova, E.F. Sub-Lorentzian distance and spheres on the Heisenberg group. J Dyn Control Syst 29, 1129–1159 (2023). https://doi.org/10.1007/s10883-023-09652-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-023-09652-2

Keywords

Mathematics Subject Classification (2010)

Navigation