Skip to main content
Log in

Abstract

In this manuscript, we consider a neutral functional differential equation. We make some assumptions and formulate conditions that ensure the existence of a zero-Hopf singularity. Using normal form theory and center manifold reduction, we derive the normal form up to third-order terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Wang, C., Wei, J.: Hopf bifurcation for neutral functional differential equations. Nonlinear Anal. Real World Appl. 11(3), 1269–1277 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cao, J., Yuan, R.: Bogdanov–Takens bifurcation for neutral functional differential equations. Electron. J. Differ. Equ. 2013(252), 1–12 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Achouri, H., Aouiti, C.: Bogdanov–Takens and triple zero bifurcations for a neutral functional differential equations with multiple delays. J. Dyn. Differ. Equ. 35, 355–380 (2021)

    Article  MathSciNet  Google Scholar 

  4. Wu, X.P., Wang, L.: Zero-Hopf singularity for general delayed differential equations. Nonlinear Dyn. 75(1), 141–155 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hale, J.K., Magalhães, L.T., Oliva, W.: Dynamics in Infinite Dimensions, vol. 47. Springer (2006)

  6. Kuznetsov, Y.A., Kuznetsov, I.A., Kuznetsov, Y.: Elements of Applied Bifurcation Theory, vol. 112. Springer, New York (1998)

    MATH  Google Scholar 

  7. Weedermann, M.: Normal forms for neutral functional differential equations. Top. Funct. Differ. Differ. Equ. 29, 361–368 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Faria, T., Magalhães, L.T.: Normal forms for retarded functional differential equations with parameters and applications to Hopf bifurcation. J. Differ. Equ. 122(2), 181–200 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Faria, T., Magalhães, L.T.: Normal forms for retarded functional differential equations and applications to Bogdanov–Takens singularity. J. Differ. Equ. 122(2), 201–224 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wu, X., Wang, L.: Zero-Hopf bifurcation for van der Pol’s oscillator with delayed feedback. J. Comput. Appl. Math. 235(8), 2586–2602 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chow, S.-N., Li, C., Wang, D.: Normal Forms and Bifurcation of Planar Vector Fields. Cambridge University Press (1994)

Download references

Acknowledgements

The author expresses many thanks to the referee for valuable suggestions. The author would like to thanks Professor Chaouki Aouiti for his helpful remarks and support during the paper’s preparation.

Funding

This work was supported by GAMA Laboratory LR21ES10, Ministry of Higher Education and Scientific Research, Faculty of Science of Bizerte, Bizerte, Tunisia.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Houssem Achouri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix

A Appendix

In this part, we will define the notations:

$$\begin{aligned} H_{1}= & {} A_{1}\varphi _{1}(0)+B_{1}\varphi _{1}(-\tau ), \\ H_{2}= & {} A_{2}\varphi _{1}(0)+B_{2}\varphi _{1}(-\tau ), \\ H_{3}= & {} A_{1}\bar{\varphi }_{1}(0)+B_{1}\bar{\varphi }_{1}(-\tau ), \\ H_{4}= & {} A_{2}\bar{\varphi }_{1}(0)+B_{2}\bar{\varphi }_{1}(-\tau ), \\ H_{5}= & {} A_{1}\varphi _{2}(0)+B_{1}\varphi _{2}(-\tau ), \\ H_{6}= & {} A_{2}\varphi _{2}(0)+B_{2}\varphi _{2}(-\tau ), \\ H_{7}= & {} \displaystyle \sum _{i=1}^{n}(E_{i}\varphi _{1i}(0) \varphi _{1}(-\tau ) + F_{i}\varphi _{1i}(0)\varphi _{1}(0) + K_{i}\varphi _{1i}(-\tau )\varphi _{1}(-\tau )), \\ H_{8}= & {} \displaystyle \sum _{i=1}^{n}(E_{i}\bar{\varphi }_{1i}(0) \bar{\varphi }_{1}(-\tau ) + F_{i}\bar{\varphi }_{1i}(0) \bar{\varphi }_{1}(0) + K_{i}\bar{\varphi }_{1i}(-\tau ) \bar{\varphi }_{1}(-\tau )), \\ H_{9}= & {} \displaystyle \sum _{i=1}^{n}(E_{i}\varphi _{2i} (0)\varphi _{2}(-\tau ) + F_{i}\varphi _{2i}(0)\varphi _{2}(0) + K_{i}\varphi _{2i}(-\tau )\varphi _{2}(-\tau )), \\ H_{10}= & {} \displaystyle \sum _{i=1}^{n}\big (E_{i} (\varphi _{1i}(0)\bar{\varphi }_{1}(-\tau ) + \bar{\varphi }_{1i} (0)\varphi _{1}(-\tau )) + F_{i}(\varphi _{1i}(0)\bar{\varphi }_{1}(0) + \bar{\varphi }_{1i}(0)\varphi _{1}(0)) \\{} & {} \quad +\, K_{i}(\varphi _{1i} (-\tau )\bar{\varphi }_{1}(-\tau ) + \bar{\varphi }_{1i}(-\tau ) \varphi _{1}(-\tau ))\big ), \\ H_{11}= & {} \displaystyle \sum _{i=1}^{n}\big (E_{i}(\varphi _{1i} (0)\varphi _{2}(-\tau ) + \varphi _{2i}(0)\varphi _{1}(-\tau )) + F_{i}(\varphi _{1i}(0)\varphi _{2}(0) + \varphi _{2i}(0) \varphi _{1}(0)) \\{} & {} \quad +\, K_{i}(\varphi _{1i}(-\tau )\varphi _{2} (-\tau ) + \varphi _{2i}(-\tau )\varphi _{1}(-\tau ))\big ), \\ H_{12}= & {} \displaystyle \sum _{i=1}^{n}\big (E_{i} (\bar{\varphi }_{1i}(0)\varphi _{2}(-\tau ) + \varphi _{2i}(0) \bar{\varphi }_{1}(-\tau )) + F_{i}(\bar{\varphi }_{1i}(0) \varphi _{2}(0) + \varphi _{2i}(0)\bar{\varphi }_{1}(0))\\{} & {} \quad +\, K_{i}(\bar{\varphi }_{1i}(-\tau )\varphi _{2}(-\tau ) + \varphi _{2i}(-\tau )\bar{\varphi }_{1}(-\tau ))\big ), \\ G_{1}= & {} \displaystyle \sum _{i=1}^{n}\big [\varOmega _{i}^{1} \varphi _{1i}(0)\varphi _{1}^{2}(0) + \varOmega _{i}^{2} \varphi _{1i}(0)\varphi _{1}^{2}(-\tau ) + \varOmega _{i}^{3} \varphi _{1i}(-\tau )\varphi _{1}^{2}(0) + \varOmega _{i}^{4} \varphi _{1i}(-\tau )\varphi _{1}^{2}(-\tau ) \big ], \\ G_{2}= & {} \displaystyle \sum _{i=1}^{n}\big [\varOmega _{i}^{1} \bar{\varphi }_{1i}(0)\bar{\varphi }_{1}^{2}(0) + \varOmega _{i}^{2}\bar{\varphi }_{1i}(0)\bar{\varphi }_{1}^{2} (-\tau ) + \varOmega _{i}^{3}\bar{\varphi }_{1i}(-\tau ) \bar{\varphi }_{1}^{2}(0) + \varOmega _{i}^{4} \bar{\varphi }_{1i}(-\tau )\bar{\varphi }_{1}^{2}(-\tau ) \big ], \\ G_{3}= & {} \displaystyle \sum _{i=1}^{n}\big [\varOmega _{i}^{1} \varphi _{2i}(0)\varphi _{2}^{2}(0) + \varOmega _{i}^{2} \varphi _{2i}(0)\varphi _{2}^{2}(-\tau ) + \varOmega _{i}^{3} \varphi _{2i}(-\tau )\varphi _{2}^{2}(0) + \varOmega _{i}^{4} \varphi _{2i}(-\tau )\varphi _{2}^{2}(-\tau ) \big ],\\ G_{4}= & {} \displaystyle \sum _{i=1}^{n}\big [\varOmega _{i}^{1} (\bar{\varphi }_{1i}(0)\varphi _{1}^{2}(0) + 2\varphi _{1i} (0)\varphi _{1}(0)\bar{\varphi }_{1}(0)) \\{} & {} \quad +\,\varOmega _{i}^{2} (\bar{\varphi }_{1i}(0)\varphi _{1}^{2}(-\tau ) + 2\varphi _{1i}(0)\varphi _{1}(-\tau )\bar{\varphi }_{1}(-\tau ))\\{} & {} \quad +\, \varOmega _{i}^{3}(\bar{\varphi }_{1i}(-\tau )\varphi _{1}^{2}(0) + 2\varphi _{1i}(-\tau )\varphi _{1}(0)\bar{\varphi }_{1}(0))\\{} & {} \quad +\,\varOmega _{i}^{4}(\bar{\varphi }_{1i}(-\tau )\varphi _{1}^{2} (-\tau ) + 2\varphi _{1i}(-\tau )\varphi _{1}(-\tau ) \bar{\varphi }_{1}(-\tau ))\big ],\\ G_{5}= & {} \displaystyle \sum _{i=1}^{n}\big [\varOmega _{i}^{1} (\varphi _{2i}(0)\varphi _{1}^{2}(0) + 2\varphi _{1i}(0) \varphi _{1}(0)\varphi _{2}(0)) \\{} & {} \quad +\, \varOmega _{i}^{2}(\varphi _{2i}(0) \varphi _{1}^{2}(-\tau ) + 2\varphi _{1i}(0)\varphi _{1}(-\tau ) \varphi _{2}(-\tau ))\\{} & {} \quad +\, \varOmega _{i}^{3}(\varphi _{2i}(-\tau )\varphi _{1}^{2}(0) + 2\varphi _{1i}(-\tau )\varphi _{1}(0)\varphi _{2}(0))\\{} & {} \quad +\,\varOmega _{i}^{4}(\varphi _{2i}(-\tau )\varphi _{1}^{2} (-\tau ) + 2\varphi _{1i}(-\tau )\varphi _{1}(-\tau ) \varphi _{2}(-\tau ))\big ],\\ G_{6}= & {} \displaystyle \sum _{i=1}^{n}\big [\varOmega _{i}^{1} (\varphi _{1i}(0)\bar{\varphi }_{1}^{2}(0) + 2\bar{\varphi }_{1i} (0)\varphi _{1}(0)\bar{\varphi }_{1}(0)) \\{} & {} \quad +\, \varOmega _{i}^{2} (\varphi _{1i}(0)\bar{\varphi }_{1}^{2}(-\tau ) + 2\bar{\varphi }_{1i}(0)\varphi _{1}(-\tau )\bar{\varphi }_{1}(-\tau ))\\{} & {} \quad +\, \varOmega _{i}^{3}(\varphi _{1i}(-\tau )\bar{\varphi }_{1}^{2} (0) + 2\bar{\varphi }_{1i}(-\tau )\varphi _{1}(0)\bar{\varphi }_{1}(0))\\{} & {} \quad +\, \varOmega _{i}^{4}(\varphi _{1i}(-\tau )\bar{\varphi }_{1}^{2}(-\tau ) + 2\bar{\varphi }_{1i}(-\tau )\varphi _{1}(-\tau )\bar{\varphi }_{1} (-\tau ))\big ], \\ G_{7}= & {} \displaystyle \sum _{i=1}^{n}\big [\varOmega _{i}^{1} (\varphi _{2i}(0)\bar{\varphi }_{1}^{2}(0) + 2\bar{\varphi }_{1i} (0)\varphi _{2}(0)\bar{\varphi }_{1}(0)) \\{} & {} \quad +\, \varOmega _{i}^{2} (\varphi _{2i}(0)\bar{\varphi }_{1}^{2}(-\tau ) + 2\bar{\varphi }_{1i}(0)\varphi _{2}(-\tau )\bar{\varphi }_{1}(-\tau ))\\{} & {} \quad +\, \varOmega _{i}^{3}(\varphi _{2i}(-\tau )\bar{\varphi }_{1}^{2}(0) + 2\bar{\varphi }_{1i}(-\tau )\varphi _{2}(0)\bar{\varphi }_{1}(0))\\{} & {} \quad +\, \varOmega _{i}^{4}(\varphi _{2i}(-\tau )\bar{\varphi }_{1}^{2}(-\tau ) + 2\bar{\varphi }_{1i}(-\tau )\varphi _{2}(-\tau )\bar{\varphi }_{1} (-\tau ))\big ], \\ G_{8}= & {} \displaystyle \sum _{i=1}^{n}\big [\varOmega _{i}^{1} (\varphi _{1i}(0)\varphi _{2}^{2}(0) + 2\varphi _{2i}(0) \varphi _{1}(0)\varphi _{2}(0)) \\{} & {} \quad +\, \varOmega _{i}^{2} (\varphi _{1i}(0)\varphi _{2}^{2}(-\tau ) + 2\varphi _{2i}(0) \varphi _{1}(-\tau )\varphi _{2}(-\tau )) \\{} & {} \quad +\, \varOmega _{i}^{3}(\varphi _{1i}(-\tau )\varphi _{2}^{2}(0) + 2\varphi _{2i}(-\tau )\varphi _{1}(0)\varphi _{2}(0))\\{} & {} \quad +\,\varOmega _{i}^{4}(\varphi _{1i}(-\tau )\varphi _{2}^{2} (-\tau ) + 2\varphi _{2i}(-\tau )\varphi _{1}(-\tau ) \varphi _{2}(-\tau ))\big ], \\ G_{9}= & {} \displaystyle \sum _{i=1}^{n}\big [\varOmega _{i}^{1} (\bar{\varphi }_{1i}(0)\varphi _{2}^{2}(0) + 2\varphi _{2i}(0) \bar{\varphi }_{1}(0)\varphi _{2}(0)) \\{} & {} \quad +\, \varOmega _{i}^{2} (\bar{\varphi }_{1i}(0)\varphi _{2}^{2} (-\tau ) + 2\varphi _{2i} (0)\bar{\varphi }_{1}(-\tau )\varphi _{2}(-\tau ))\\{} & {} \quad +\, \varOmega _{i}^{3}(\bar{\varphi }_{1i}(-\tau )\varphi _{2}^{2}(0) + 2\varphi _{2i}(-\tau )\bar{\varphi }_{1}(0)\varphi _{2}(0))\\{} & {} \quad +\,\varOmega _{i}^{4}(\bar{\varphi }_{1i}(-\tau )\varphi _{2}^{2} (-\tau ) + 2\varphi _{2i}(-\tau )\bar{\varphi }_{1}(-\tau ) \varphi _{2}(-\tau ))\big ],\\ G_{10}= & {} 2\displaystyle \sum _{i=1}^{n}\big [\varOmega _{i}^{1} (\varphi _{1i}(0)\bar{\varphi }_{1}(0)\varphi _{2}(0) +\bar{\varphi }_{1i}(0)\varphi _{1}(0)\varphi _{2}(0) + \varphi _{2i}(0)\bar{\varphi }_{1}(0)\varphi _{1}(0))\\{} & {} \quad +\, \varOmega _{i}^{2}(\varphi _{1i}(0)\bar{\varphi }_{1} (-\tau )\varphi _{2}(-\tau ) + \bar{\varphi }_{1i}(0) \varphi _{1}(-\tau )\varphi _{2}(-\tau ) + \varphi _{2i} (0)\bar{\varphi }_{1}(-\tau )\varphi _{1}(-\tau ))\\{} & {} \quad +\, \varOmega _{i}^{3}(\varphi _{1i}(-\tau )\bar{\varphi }_{1} (0)\varphi _{2}(0) + \bar{\varphi }_{1i}(-\tau )\varphi _{1} (0)\varphi _{2}(0) + \varphi _{2i}(-\tau )\bar{\varphi }_{1} (0)\varphi _{1}(0))\\{} & {} \quad +\, \varOmega _{i}^{4}(\varphi _{1i}(-\tau )\bar{\varphi }_{1} (-\tau )\varphi _{2}(-\tau ) + \bar{\varphi }_{1i}(-\tau ) \varphi _{1}(-\tau )\varphi _{2}(-\tau ) \\{} & {} \quad + \varphi _{2i} (-\tau )\bar{\varphi }_{1}(-\tau )\varphi _{1}(-\tau ))\big ]. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Achouri, H. Zero-Hopf Calculations for Neutral Differential Equations. J Dyn Diff Equat (2023). https://doi.org/10.1007/s10884-023-10261-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10884-023-10261-7

Keywords

Mathematics Subject Classification

Navigation