Skip to main content
Log in

The Egg Parasitoid Trissolcus basalis uses n-nonadecane, a Cuticular Hydrocarbon from its Stink Bug Host Nezara viridula, to Discriminate Between Female and Male Hosts

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

An Erratum to this article was published on 27 November 2007

Abstract

Contact kairomones from adult southern green stink bugs, Nezara viridula (L.) (Heteroptera: Pentatomidae) that elicit foraging behavior of the egg parasitoid Trissolcus basalis (Wollaston) were investigated in laboratory experiments. Chemical residues from tarsi and scutella of N. viridula induced foraging by gravid female T. basalis. Residues from body parts of female N. viridula elicited stronger responses than those from the corresponding body parts of males. Deproteinized tarsi still elicited searching responses from wasps, indicating that the kairomone was not proteinaceous. Hexane extracts of host cuticular lipids induced searching responses from T. basalis, with a strong preference for extracts from female hosts. Extracts consisted primarily of linear alkanes from nC19 to nC34, with quantitative and qualitative differences between the sexes. Extracts of female N. viridula contained more nC23, nC24, and nC25 than the corresponding extracts from males, whereas nC19 was detected only in extracts from males. Direct-contact solid phase microextraction (DC-SPME) of N. viridula cuticle and of residues left by adult bugs walking on a glass plate confirmed gender-specific differences in nC19. Trissolcus basalis females responded weakly to a reconstructed blend of the straight-chain hydrocarbons, suggesting that minor components other than linear alkanes must be part of the kairomone. Addition of nC19 to hexane extracts of female N. viridula significantly reduced the wasps’ arrestment responses, similar to wasps’ responses to hexane extracts of male hosts. Overall, our results suggest that a contact kairomone that elicits foraging by T. basalis females is present in the cuticular lipids of N. viridula, and that the presence or absence of nC19 allows T. basalis females to distinguish between residues left by male or female hosts. The ecological significance of these results in the host location behavior of scelionid egg parasitoids is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beevers, M., Lewis, W. J., Gross, H. R., Jr., and Noldus, D. A. 1981. Kairomones and their use for management of entomophagous insects: X. Laboratory studies on manipulation of host-finding behavior of Trichogramma pretiosum Riley with a kairomone extracted from Heliothis zea (Boddie) moth scales. J. Chem. Ecol. 7:635-648.

    Article  CAS  Google Scholar 

  • Boo, K. S. and Yang, J. P. 2000. Kairomones used by Trichogramma chilonis to find Helicoverpa assulta eggs. J. Chem. Ecol. 26:359–375.

    Article  CAS  Google Scholar 

  • Borges, M., Colazza, S., Ramirez-Lucas, P., Chauhan, K. R., Kramer, M., Moraes, M. C. B., and Aldrich, J. R. 2003. Kairomonal effect of walking traces from Euschistus heros (Heteroptera: Pentatomidae) on two strains of Telenomus podisi (Hymenoptera: Scelionidade). Physiol. Entomol. 28:349–355.

    Article  Google Scholar 

  • Chabi-Olaye, A., Schulthess, F., Poehling, H. M., and Borgemeister, C. 2001. Host location and host discrimination behavior of Telenomus isis, an egg parasitoid of the African cereal stem borer Sesamia calamistis. J. Chem. Ecol. 27:663–678.

    Article  PubMed  CAS  Google Scholar 

  • Colazza, S. and Rosi, M. C. 2001. Difference in the searching behaviors of two strains of the egg parasitoid Telenomus busseolae (Hymenoptera: Scelionidae). Eur. J. Entomol. 98:47–52.

    Google Scholar 

  • Colazza, S., Peri, D., Salerno, G., Peri, E., Lo pinto, M., and Liotta, G. 1999a. Xbug, a video tracking and motion analysis system for LINUX. XII International Entomophagous Insects Workshop. Pacific Grove, California, September 26–30, 1999.

  • Colazza, S., Salerno, G., and Wajnberg, E. 1999b. Volatile and contact chemicals released by Nezara viridula (Heteroptera: Pentatomidae) have a kairomonal effect on the egg parasitoid Trissolcus basalis (Hymenoptera: Scelionidae). Biol. Control 16:310–317.

    Article  Google Scholar 

  • Conti, E., Salerno, G., Bin, F., Williams, H. J., and Vinson, S. B. 2003. Chemical cues from Murgantia histrionica eliciting host location and recognition in the egg parasitoid Trissolcus brochymenae. J. Chem. Ecol. 29:115–130.

    Article  PubMed  CAS  Google Scholar 

  • Conti, E., Salerno, G., Bin, F., and Vinson, S. B. 2004. The role of host semiochemicals in parasitoid specificity: a case study with Trissolcus brochymenae and Trissolcus simoni on pentatomid bugs. Biol. Control 29:435–444.

    Article  CAS  Google Scholar 

  • Eltz, T. 2006. Tracing pollinator footprints on natural flowers. J. Chem. Ecol. 32:907–915.

    Article  PubMed  CAS  Google Scholar 

  • Gardner, S. M. and Van Lenteren, J. C. 1986. Characterization of the arrestment responses of Trichogramma evanescens. Oecologia 68:265–270.

    Article  Google Scholar 

  • Ghazi-bayat, A. and Hasenfuss, I. 1980. Zur Herkunft der Adhäsionsflüssigkeit der tarsalen Haftlappen bei den Pentatomide (Heteroptera). Zool. Anz. 204:13–18.

    Google Scholar 

  • Gibbs, A. G. 1998. Water-proofing properties of cuticular lipids. Am. Zool. 38:471–482.

    CAS  Google Scholar 

  • Godfray, H. C. J. 1994. Parasitoids: Behavioral and Evolutionary Ecology, Princeton Univ. Press, Princeton, NJ, USA.

    Google Scholar 

  • Grant, L. G. and Barbosa, P. 2006. Effects of leaf epicuticular wax on the movement, foraging behavior, and attack efficacy of Diaretiella rapae. Entomol. Exp. Appl. 121:115–122.

    Article  Google Scholar 

  • Hemptinne, J. L., Lognay, G., Doumbia, M., and Dixon, A. F. G. 2001. Chemical nature and persistence of the oviposition deterring pheromone in the tracks of the larvae of the two spot ladybird, Adalia bipunctata (Coleoptera : Coccinellidae). Chemoecology 11:43–47.

    Article  CAS  Google Scholar 

  • Howard, R. W. and Blomquist, G. J. 2005. Ecological, behavioural, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50:371–393.

    Article  PubMed  CAS  Google Scholar 

  • Jones, R. L., Lewis, W. J., Beroza, B. A., and Sparks. A. N. 1973. Host-seeking stimulants (kairomones) for the egg parasite, Trichogramma evanescens. Environ. Entomol. 2:593–596.

    CAS  Google Scholar 

  • Klomp, H. 1981. Parasitic wasps as sleuthhounds. Response of ichneumonid to the trail of its host. Neth. J. Zool. 31:762–772.

    Google Scholar 

  • Kosaki, A. and Yamaoka, R. 1996. Chemical composition of footprints and cuticular lipids of three species of lady beetles. Jpn. J. App. Entomol. Zool. 40:47–53.

    CAS  Google Scholar 

  • Laing, J. 1937. Host-finding by insect parasites. I. Observations on the finding of host in Alysia manducator, Mormoniella vitripennis and Trichogramma evanescens. J. Anim. Ecol. 6:298–317.

    Article  Google Scholar 

  • Lewis, W. J. and Martin, J. 1990. Semiochemicals for use with parasitoids: Status and future. J. Chem. Ecol. 16:3067–3089.

    Article  CAS  Google Scholar 

  • Lewis, W. J., Nordlund, D. A., Gueldner, R. C., Teal, P. E. A., and Tumlinson, J. N. 1982. Kairomones and their use for management of entomophagous insects XIII. Kairomonal activity for Trichogramma spp of abdominal tips, excretion, and synthetic sex pheromone blend of Heliothis zea (Boddie) moths. J. Chem. Ecol. 9:1323–1331.

    Article  Google Scholar 

  • Mattiacci, L., Vinson, S. B., Williams, H. J., Aldrich, J. R., and Bin, F. 1993. A long range attractant kairomone for egg parasitoid Trissolcus basalis, isolated from defensive secretion of its host, Nezara viridula. J. Chem. Ecol. 19:1167–1181.

    Article  CAS  Google Scholar 

  • Mcauslane, H. J., Simmons, A. M., and Jackson, D. M. 2000. Parasitism of Bemisia argentifolii on collard with reduced or normal leaf wax. Fla. Entomol. 83:428–437.

    Article  Google Scholar 

  • Müller, C. and Riederer, M. 2005. Plant surface properties in chemical ecology. J. Chem. Ecol. 31:2621–2651.

    Article  PubMed  CAS  Google Scholar 

  • Nakashima, Y., Birkett, M. A., Pye, B. J., Pickett, J. A., and Powell, W. 2004. The role of semiochemicals in the avoidance of the seven-spot ladybird, Coccinella septempunctata, by the aphid parasitoid, Aphidius ervi. J. Chem. Ecol. 30:1103–1116.

    Article  PubMed  CAS  Google Scholar 

  • Powell, W. and Pickett, J. A. 2003. Manipulation of parasitoids for aphid pest management: progress and prospects. Pest Manag. Sci. 59:149–155.

    Article  PubMed  CAS  Google Scholar 

  • Peri, E., Sole, M. A., Wajnberg, E., and Colazza, S. 2006. Effect of host kairomones and oviposition experience on the arrestment behavior of an egg parasitoid. J. Exp. Biol. 209:3629–3635.

    Article  PubMed  Google Scholar 

  • Quicke, D. L. J. 1997. Parasitic Wasps. Chapman & Hall, London.

    Google Scholar 

  • Rani, P. U., Kumari, S. I., Sriramakrishna, T., and Sudhakar, T. R. 2007. Kairomones extracted from rice yellow stem borer and their influence on egg parasitization by Trichogramma japonicum Ashmead. J. Chem. Ecol. 33:59–73.

    Article  CAS  Google Scholar 

  • Salerno, G., Conti, E., Peri, E., Colazza, S., and Bin, F. 2006. Kairomone involvement in the host specificity of the egg parasitoid Trissolcus basalis. Eur. J. Entomol. 103:311–318.

    Google Scholar 

  • Schmidt, J. M. and Carter, M. H. 1992. The locomotory response of the egg parasitoid Trichogramma evanescens Westwood to hexane extracts of eastern spruce budworm scales (Choristoneura fumiferana) (Clemens). Can. J. Zool. 70:941–949.

    Article  Google Scholar 

  • Todd, J. W. 1989. Ecology and behavior of Nezara viridula. Annu. Rev. Entomol. 34:273–292.

    Article  Google Scholar 

  • Vet, L. E. M. 1999. From chemical to population ecology: Infochemical use in an evolutionary context. J. Chem. Ecol. 25:31–49.

    Article  CAS  Google Scholar 

  • Vet, L. E. M. and Dicke, M. 1992. Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37:141–172.

    Article  Google Scholar 

  • Vinson, S. B. 1984. Parasitoid-host relationships, pp. 205–233, in R. T. Cardé, and W. J. Bell (eds.). Chemical Ecology of Insects. Chapman & Hall, New York.

    Google Scholar 

  • Vinson, S. B. 1991. Chemical signals used by parasitoids. Redia 74:15–42.

    Google Scholar 

  • Vinson, S. B. 1998. The general host selection behavior of parasitoid Hymenoptera and a comparison of initial strategies utilized by larvaphagous and oophagous species. Biol. Control 11:79–96.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Giampiero La Rocca for providing Trypsin-EDTA. This work was financially supported by Miur Cofin 2004. It is part of the European Science Foundation (ESF) Behavioral Ecology of Insect Parasitoids (BEPAR) scientific program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Colazza.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10886-007-9389-8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colazza, S., Aquila, G., De Pasquale, C. et al. The Egg Parasitoid Trissolcus basalis uses n-nonadecane, a Cuticular Hydrocarbon from its Stink Bug Host Nezara viridula, to Discriminate Between Female and Male Hosts. J Chem Ecol 33, 1405–1420 (2007). https://doi.org/10.1007/s10886-007-9300-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-007-9300-7

Keywords

Navigation