Skip to main content
Log in

Phytotoxic Volatiles in the Roots and Shoots of Artemisia tridentata as Detected by Headspace Solid-phase Microextraction and Gas Chromatographic-mass Spectrometry Analysis

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

In the vicinity of big sagebrush (Artemisia tridentata), the growth of Nicotiana attenuata is negatively affected, in part due to the alleopathic effect of methyl jasmonate (MeJA) which is produced in large quantities by the aerial parts of sagebrush. Preliminary experiments suggested that growth-inhibiting substances were being emitted from the sagebrush roots. To identify the allelochemical secondary metabolites, we tested different root extracts in seedling growth bioassays with the naturally co-occurring native tobacco, Nicotiana attenuata, in a two-chamber Petri dish assay, optimized for tests of volatiles. Fractions rich in volatile compounds were particularly phytotoxic. We analyzed the volatiles emitted from the roots of intact Artemisia tridentata plants grown in soil, sand, and hydroponic cultures by using dynamic headspace extraction, headspace solvent-microextraction (HSME) and headspace solid-phase microextraction (HSPME), and GC-MS. Camphor, 1,8-cineol, nerol, and neryl isovalerate were phytotoxic and released as the major constituents. In addition to the phytotoxic monoterpenes, himachalenes, longifolene, caryophyllene, and acetylenic spiroethers, were found as characteristic components in the root’s volatiles. The allelopathic potential of these root volatiles was compared with that of methyl jasmonate (MeJA), one of the most active compounds emitted from above-ground parts of the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams, R. P. 2007. Identification of essential oil components by gas chromatography/mass spectrometry. Allured Pub. Co., Carol Stream, IL, USA.

    Google Scholar 

  • Asplund, R. O. 1968. Monoterpenes: relationship between structure and inhibition of germination. Phytochemistry 7:1995–1997.

    Article  CAS  Google Scholar 

  • Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., and Vivanco, J. M. 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57:233–266.

    Article  CAS  PubMed  Google Scholar 

  • Baldwin, I. T. 1998. Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc. Natl. Acad. Sci. USA, 95:8113–8118.

    Article  CAS  PubMed  Google Scholar 

  • Bertin, C., Yang, X., and Weston, L. A. 2003. The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83.

    Article  CAS  Google Scholar 

  • Bertin, C., Weston, L. A., Huang, T., Jander, G., Owens, T., Meinwald, J., and Schroeder, F. C. 2007. Grass roots chemistry: Meta-Tyrosine, an herbicidal nonprotein amino acid. Proc. Natl. Acad. Sci. USA, 104:16964–16969.

    Article  CAS  PubMed  Google Scholar 

  • Blagojević, P., Radulović, N., Palić, R., and Stojanović, G. 2006. Chemical composition of the essential oils of Serbian wild-growing Artemisia absinthium and Artemisia vulgaris. J. Agric. Food Chem. 54:4780–4789.

    Article  PubMed  Google Scholar 

  • Chen, F., Ro, D. K., Petri, J., Gershenzon, J., Bohlmann, J., Pichersky, E., and Tholl, D. 2004. Characterization of a root-specific arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-cineole. Plant Physiol. 135:1956–1966.

    Article  CAS  PubMed  Google Scholar 

  • Ens, E. J., and French, K. 2008. Exotic woody invader limits the recruitment of three indigenous plant species. Biol. Conservation 141:590–595.

    Article  Google Scholar 

  • Ens, E. J., Bremner, J. B., FRench, K., and Korth, J. 2009a. Identification of volatile compounds released by roots of an invasive plant, bitou bush (Chrysanthemoides monilifera spp. rotundata), and their inhibition of native seedling growth. Biol. Invasions 11:275–287.

    Article  Google Scholar 

  • Ens, E. J., French, K., Bremner, J. B., and Korth, J. 2009b. Novel technique shows different hydrophobic chemical signatures of exotic and indigenous plant soils with similar effects of extracts on indigenous species seedling growth. Plant Soil 326:403–414.

    Article  Google Scholar 

  • Epstein, W. W., Gaudioso, L. A., and Brewster, G. B. 1984. Essential oil constituents of Artemisia tridentata rothrockii. The isolation and characterization of two new irregular monoterpenes. J. Org. Chem. 49:2748–2754.

    Article  CAS  Google Scholar 

  • Field, B., Jordán, F., and Osbourn, A. 2006. First encounters—Deployment of defence-related natural products by plants. New Phytologist 172:193–207.

    Article  CAS  PubMed  Google Scholar 

  • Flores, H. E., Vicanco, J. M., and Loyola-Vargas, V. M. 1999. ‘Radicle’ biochemistry: The biology of root-specific metabolism. Trends Plant Sci. 4:220–226.

    Article  PubMed  Google Scholar 

  • Formacek, V., and Kubeczka, K.-H. 1982. Essential oils analysis by capillary gas chromatography and carbon-13 NMR spectroscopy. Wiley, New York.

    Google Scholar 

  • Goel, D., Goel, R., Singh, V., Ali, M., Mallavarapu, G. R., and Kumar, S. 2007. Composition of the essential oil from the root of Artemisia annua. J. Nat. Med. 61:458–461.

    Article  CAS  Google Scholar 

  • Groves, C. R., and Anderson, J. E. 1981. Allelopathic effects of Artemisia tridentata leaves on germination and growth of two grass species. Am. Midl. Nat. 106:73–79

    Article  Google Scholar 

  • Gunawardena, K., Rivera, S. B., and Epstein, W. W. 2002. The monoterpenes of Artemisia tridentata ssp. vaseyana, Artemisia cana ssp. viscidula and Artemisia tridentata ssp. spiciformis. Phytochemistry 59:197–203.

    Article  CAS  PubMed  Google Scholar 

  • Halligan, J. P. 1973. Bare areas associated with shrub stands in grassland: the case of Artemisia californica. BioScience 23:429–432.

    Article  Google Scholar 

  • Halligan, J. P. 1975. Toxic terpenes from Artemisia californica. Ecology 56:999–1003.

    Article  CAS  Google Scholar 

  • Hassner, A., and Alexanian, V. 1978. Direct room temperature esterification of carboxylic acids. Tetrahedron Lett. 46:4475–4478.

    Article  Google Scholar 

  • Hütsch, B. W., Augustin, J., and Merbach, W. 2002. Plant rhizodeposition—An important source for carbon turnover in soils. J. Plant Nutr. Soil Sci. 165:397–407.

    Article  Google Scholar 

  • Inderjit and Duke, S. O. 2003. Ecophysiological aspects of allelopathy. Planta 217:529–539.

    Article  CAS  PubMed  Google Scholar 

  • Inderjit, and Nilsen, E. T. 2003. Bioassays and field studies for allelopathy in terrestrial plants: Progress and problems. Crit. Rev. Plant Sci. 22:221–238.

    Article  Google Scholar 

  • Karban, R., Baldwin, I. T., Baxter, K. J., Laue, G., and Felton, G. W. 2000. Communication between plants: Induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia 125:66–71.

    Article  Google Scholar 

  • Karban, R., Maron, J., Felton, G. W., Ervin, G., and Eichenseer, H. 2003. Herbivore damage to sagebrush induces resistance in wild tobacco: Evidence for eavesdropping between plants. Oikos 100:325–332.

    Article  Google Scholar 

  • Karban, R., Shiojiri, K., Huntzinger, M., and Mccall, A. C. 2006. Damage-induced resistance in sagebrush: Volatiles are key to intra- and interplant communication. Ecology 87:922–930.

    Article  PubMed  Google Scholar 

  • Kelsey, R. G., Wright, W. E., Sneva, F., Winward, A., and Britton, C. 1983. The concentration and composition of big sagebrush essential oils from Oregon. Biochem. Syst. Ecol. 11:353–360.

    Article  CAS  Google Scholar 

  • Kennedy, A. I., Deans, S. G., Svoboda, K. P., Gray, A. I., and Waterman, P. G. 1993. Volatile oils from normal and transformed root of Artemisia absinthium. Phytochemistry 32:1449–1451.

    Article  CAS  Google Scholar 

  • Kessler, A., Halitschke, R., Diezel, C., and Baldwin, I. T. 2006. Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata. Oecologia 148:280–292.

    Article  PubMed  Google Scholar 

  • Kordali, S., Cakir, A., and Sutay, S. 2007. Inhibitory effects of monoterpenes on seed germination and seedling growth. Z. Naturforsch. C 62:207–214.

    CAS  PubMed  Google Scholar 

  • Krügel, T., Lim, M., Gase, K., Halitschke, R., and Baldwin, I. T. 2002. Agrobacterium-mediated transformation of Nicotiana attenuata, a model ecological expression system. Chemoecology 12:177–183.

    Article  Google Scholar 

  • Lin, C., Owen, S. M., and Pe‎Ñuelas, J. 2007. Volatile organic compounds in the roots and rhizosphere of Pinus spp. Soil Biol. Biochem. 39:951–960.

    Article  CAS  Google Scholar 

  • Martínez, V., Barberá, O., Sánchez-Parareda, J., and Alberto Marco, J. 1987. Phenolic and acetylenic metabolites from Artemisia assoana. Phytochemistry 26:2619–2624.

    Article  Google Scholar 

  • Mccahon, C. B., Kelsey, R. G., Sheridan, R. P., and Shafizadeh, F. 1973. Physiological effects of compounds extracted from sagebrush. Bull. Torr. Bot. Club. 100:23–28.

    Article  CAS  Google Scholar 

  • Mohney, B., Matz, T., Lamoreaux, J., Wilcox, D., Gimsing, A., Mayer, P., and Weidenhamer, J. 2009. In situ silicone tube microextraction: A new method for undisturbed sampling of root-exuded thiophenes from marigold (Tagetes erecta L.) in soil. J. Chem. Ecol. 35:1279–1287.

    Article  CAS  PubMed  Google Scholar 

  • Muller, C. H., and Del Moral, R. 1966. Soil toxicity induced by terpenes from Salvia leucophylla Bull. Torr. Bot. Club. 93:130–137.

    Article  CAS  Google Scholar 

  • Muller, C. H., Muller, W. H., and Haines, B. L. 1964. Volatile growth inhibitors produced by aromatic shrubs. Science 143:471–473.

    Article  CAS  PubMed  Google Scholar 

  • Preston, C. A., Laue, G., and Baldwin, I. T. 2001. Methyl jasmonate is blowing in the wind, but can it act as a plant-plant airborne signal? Biochem. Syst. Ecol. 29:1007–1023.

    Article  CAS  Google Scholar 

  • Preston, C. A., Betts, H., and Baldwin, I. T. 2002. Methyl jasmonate as an allelopathic agent: Sagebrush inhibits germination of a neighboring tobacco, Nicotiana attenuata. J. Chem. Ecol. 28:2343–2369.

    Article  CAS  PubMed  Google Scholar 

  • Preston, C. A., Laue, G., and Baldwin, I. T. 2004. Plant-plant signaling: Application of trans- or cis-methyl jasmonate equivalent to sagebrush releases does not elicit direct defenses in native tobacco. J. Chem. Ecol. 30:2193–2214.

    Article  CAS  PubMed  Google Scholar 

  • Romagni, J. G., Allen, S. N., and Dayan, F. E. 2000. Allelopathic effects of volatile cineoles on two weedy plant species. J. Chem. Ecol. 26:303–313.

    Article  CAS  Google Scholar 

  • ROMEO, J. T. 2009. New SPME guidelines. J. Chem. Ecol. 35:1383.

    Article  CAS  Google Scholar 

  • Schlatterer, E. F., and Tisdale, E. W. 1969. Effects of litter of Artemisia, Chrysothamnus, and Tortula on germination and growth of three perennial grasses. Ecology 50:869–873.

    Article  Google Scholar 

  • Steeghs, M., Bais, H. P., De Gouw, J., Goldan, P., Kuster, W., Northway, M., Fall, R., and Vivanco, J. M. 2004. Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in Arabidopsis. Plant Physiol. 135:47–58.

    Article  CAS  PubMed  Google Scholar 

  • Uchio, Y., Tomosue, K., Nakayama, M., Yamamura, A., and Waki, T. 1981. Constituents of the essential oils from three tetraploid species of Chrysanthemum. Phytochemistry 20:2691–2693.

    Article  CAS  Google Scholar 

  • Walker, T. S., Bais, H. P., Grotewold, E., and Vivanco, J. M. 2003. Root exudation and rhizosphere biology. Plant Physiol. 132:44–51.

    Article  CAS  PubMed  Google Scholar 

  • Weaver, T. W., and Klarich, D. 1977. Allelopathic effects of volatile substances from Artemisia tridentata Nutt. Am. Midl. Nat. 97:508–512.

    Article  Google Scholar 

  • Weidenhamer, J. D., Macias, F. A., Fischer, N. H., and Williamson, G. B. 1993. Just how insoluble are monoterpenes? J. Chem. Ecol. 19:1799–1807.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Alexander von Humboldt foundation and Max Planck Society for research grants for ARJ and SZ, the glasshouse team for growing the plants and Emily Wheeler for editorial assistance of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Reza Jassbi.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Fig. S1

Paper-disc agar bioassay to evaluate the effect of volatiles on the growth or germination of N. attenuata seedlings; 12 seeds were germinated on the agar in one compartment of a two-chambered Petri dish, and in another the volatile compound was applied to a paper disc (DOC 2985 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jassbi, A.R., Zamanizadehnajari, S. & Baldwin, I.T. Phytotoxic Volatiles in the Roots and Shoots of Artemisia tridentata as Detected by Headspace Solid-phase Microextraction and Gas Chromatographic-mass Spectrometry Analysis. J Chem Ecol 36, 1398–1407 (2010). https://doi.org/10.1007/s10886-010-9885-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-010-9885-0

Key Words

Navigation