Skip to main content
Log in

Flavonoid Glycosides and Naphthodianthrones in the Sawfly Tenthredo zonula and its Host-Plants, Hypericum perforatum and H. hirsutum

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Larvae of the sawfly Tenthredo zonula are specialized on Hypericum. Whether the sawfly is able to sequester plant metabolites was unknown. Aerial materials of Hypericum perforatum and H. hirsutum, as well as dissected larvae and prepupae of T. zonula, were analyzed by HPLC to determine the presence and content of flavonoid glycosides (rutin, hyperoside, isoquercitrin, and quercitrin) and naphthodianthrones (pseudohypericin and hypericin). All flavonoid glycosides were detected in both Hypericum species, with hyperoside as major compound in H. perforatum (ca. 1.7 μmol/g fresh weight, FW) and isoquercitrin in H. hirsutum (0.7 μmol/g FW). Naphthodianthrones were present at low concentrations (0.02 μmol/g FW) in the former, and almost undetected in the latter species. In the body parts (i.e., hemolymph, digestive tract, salivary glands, or miscellaneous organs) of T. zonula, the surveyed compounds were detected more frequently in prepupae than in larvae. The compounds were not present in every sample, and flavonoid glycosides especially occurred in highly variable amounts, with maximal concentrations of 41 μg rutin/prepupa in salivary glands, 8 μg hyperoside/prepupa in hemolymph (= 0.36 μmol/g FW), 32 μg isoquercitrin/prepupa in salivary glands, and 63 μg quercitrin/larva in miscellaneous organs (mainly composed of the integument). We conclude that flavonoid glycosides are sequestered since they were detected in organs other than the digestive tract of larvae, and because prepupae are a non-feeding stage. The naphthodianthrone pseudohypericin, but not hypericin, occurred generally in the digestive tract (up to 0.25 μg/larva). Both naphthodianthrones and related unidentified compounds, but not flavonoid glycosides, were found in the larval excrement. The highly variable distributions of flavonoid glycosides and naphthodianthrones in T. zonula larvae and prepupae make it difficult to determine the ecological significance of these metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aucoin, R. R., Fields, P., Lewis, M. A., Philogène, B. J. R., and Arnason, J. T. 1990. The protective effect of antioxidant to a phototoxin-sensitive insect herbivore, Manduca sexta. J. Chem. Ecol. 16:2913–2924.

    Article  CAS  Google Scholar 

  • Aucoin, R. R., Philogène, B. J. R., and Arnason, J. T. 1991. Antioxidant enzymes as biochemical defense against phototoxin-induced oxidative stress in three species of herbivorous lepidoptera. Arch. Insect Biochem. Phys. 16:139–152.

    Article  CAS  Google Scholar 

  • Aucoin, R. R., Guillet, G., Murray, C., Philogène, B. J. R., and Arnason, J. T. 1995. How do insect herbivores cope with the extreme oxidative stress of phototoxic host plants? Arch. Insect Biochem. Phys. 29:211–226.

    Article  CAS  Google Scholar 

  • Berenbaum, M. R. 1987. Charge of the light brigade: Phototoxicity as a defense against insects, pp. 206–216, in J. Heitz and K. R. Downum (eds.). Light-Activated Pesticides, ACS Symposium Series 339. American Chemical Society, Washington D.C.

    Google Scholar 

  • Boevé, J.-L. and Schaffner, U. 2003. Why does the larval integument of some sawfly species disrupt so easily? The harmful hemolymph hypothesis. Oecologia 134:104–111.

    Article  PubMed  Google Scholar 

  • Bowers, M. D., Boockvar, K., and Collinge, S. K. 1993. Iridoid glycosides of Chelone glabra (Scrophulariaceae) and their sequestration by larvae of a sawfly, Tenthredo grandis (Tenthredinidae). J. Chem. Ecol. 19:815–823.

    Article  CAS  Google Scholar 

  • Ciccarelli, D., Andreucci, A. C., and Pagni, A. M. 2001a. Translucent glands and secretory canals in Hypericum perforatum L. (Hyperiacaceae): morphological, anatomical and histochemical studies during the course of ontogenesis. Ann. Bot. 88:637–644.

    Article  Google Scholar 

  • Ciccarelli, D., Andreucci, A. C., and Pagni, A. M. 2001b. The “black nodules” of Hypericum perforatum L. subsp. perforatum: morphological, anatomical, and histochemical studies during the course of ontogenesis. Israel J. Plant Sci. 49:33–40.

  • Crockett, S., Schaneberg, B., and Khan, I. 2005. Phytochemical profiling of new and old world Hypericum (St. John’s wort) species. Phytochem. Anal. 16:479–485.

    Article  PubMed  CAS  Google Scholar 

  • Duffey, S. S. 1980. Sequestration of plant natural products by insects. Annu. Rev. Entomol. 25:447–477.

    Article  CAS  Google Scholar 

  • Duffey, S. S. and Pasteels, J. M. 1993. Transient uptake of hypericin of chrysomelids is regulated by feeding behavior. Phys. Entomol. 18:119–129.

    Article  CAS  Google Scholar 

  • Eisner, T., Johnessee, J. S., Carrel, J., Hendry, L. B., and Meinwald, J. 1974. Defensive use by an insect of a plant resin. Science 184:996–999.

    Article  PubMed  CAS  Google Scholar 

  • Feyereisen, R. 1999. Insect P450 enzymes. Annu. Rev. Entomol. 44:507–533.

    Article  PubMed  CAS  Google Scholar 

  • Fields, P.G., Arnason, J. T., Philogène, J. R. 1990. Behavioural and physical adaptations of three insects that feed on the phototoxic plant Hypericum perforatum. Can. J. Zoo1. 68:339–346.

  • Ganzera, M., Zhao, J., and Khan, I. A. 2002. Hypericum perforatum – Chemical profiling and quantitative results of St. John’s wort products by an improved high-performance liquid chromatography method. J. Pharm. Sci. 91:623–630.

  • Guillet, G., Podenszfinski, C., Regnault-Roger, C., Arnason, J. T., and Philogène, B. J. R. 2000. Behavioral and biochemical adaptations of generalist and specialist herbivorous insects feeding on Hypericum perforatum (Guttiferae). Environ. Entomol. 29:135–139.

    Article  CAS  Google Scholar 

  • Hölzl, J. and Petersen, M. 2003. Chemical constituents in Hypericum, pp. 77–93, in E. Ernst (ed.). Hypericum: The Genus Hypericum. Taylor and Francis, New York, USA.

    Google Scholar 

  • Knox, J. P. and Dodge, A. D. 1985a. Isolation and activity of the photodynamic pigment hypericin. Plant Cell Environ. 8:9–25.

    Article  Google Scholar 

  • Knox, J. P. and Dodge, A. D. 1985b. Singlet oxygen and plants. Phytochemistry 24:889–896.

    Article  CAS  Google Scholar 

  • Lacourt, J. 1999. Répertoire des Tenthredinidae ouest-paléarctiques. Mém. SEF, 3:1–432.

  • Larson, R. A. 1986. Insect defenses against phototoxic plant chemicals. J. Chem. Ecol. 12:859–870.

    Article  CAS  Google Scholar 

  • Lawton, M. A. and Lamb, C. J. 1987. Transcriptional activation of plant defense genes by fungal elicitor, wounding, and infection. Mol. Cell Biol. 7:335–341.

    PubMed  CAS  Google Scholar 

  • Lorenz, H. and Kraus, M. 1957. Die Larvalsystematik der Blattwespen (Tenthredinoidea und Megalodontoidea). Akademie-Verlag, Berlin.

    Google Scholar 

  • Menn, J. J. 1978. Comparative aspects of pesticide metabolism in plants and animals. Environ. Health Perspect. 27:113–124.

    Article  PubMed  CAS  Google Scholar 

  • Müller, C., Agerbirk, N., Olsen, C. E., Boevé, J.-L., Schaffner, U., and Brakefield, P. M. 2001. Sequestration of host plant glucosinolates in the defensive hemolymph of the sawfly Athalia rosae. J. Chem. Ecol. 27:2505–2516.

    Article  PubMed  Google Scholar 

  • Nahrstedt, A. and Butterweck, V. 2010. Lessons learned from herbal medicinal products: the example of St. John’s wort. J. Nat. Prod. 73:1015–1021.

  • Opitz, S. E. W. and Müller, C. 2009. Plant chemistry and insect sequestration. Chemoecology 19:117–154.

    Article  CAS  Google Scholar 

  • Opitz, S. E. W., Jensen, S. R., and Müller, C. 2010. Sequestration of glucosinolates and iridoid glucosides in sawfly species of the genus Athalia and their role in defense against ants. J. Chem. Ecol. 36:148–157.

    Article  PubMed  CAS  Google Scholar 

  • Prieto, J. M., Schaffner, U., Barker, A., Braca, A., Siciliano, T., and Boevé, J.-L. 2007. Sequestration of furostanol saponins by Monophadnus sawfly larvae. J. Chem. Ecol. 33:513–524.

    Article  PubMed  CAS  Google Scholar 

  • Robson, N. K. B. 2002. Studies in the genus Hypericum L. (Guttiferae) 4(2). Section 9. Hypericum sensu lato (part 2): subsection 1. Hypericum series 1. Hypericum. Bull. Nat. Hist. Mus. Lond. (Bot.) 32:61–123.

  • Robson, N. K. B. 2010. Studies in the genus Hypericum L. (Hypericaceae) 5(2). Sections 17. Hirtella to 19. Coridium. Phytotaxa 4:127–258.

  • Rowell-Rahier, M. and Pasteels, J. M. 1992. Third trophic level influences of plant allelochemicals, pp. 243–277, in G. A. Rosenthal and M. R. Berenbaum (eds.). Herbivores: Their Interactions with Secondary Plant Metabolites, 2nd Edition, Vol. 2, Ecological and Evolutionary Processes. Academic Press Inc., San Diego, California.

  • Sandberg, S. L. and Berenbaum, M. R. 1989. Leaf-typing by tortricid larvae as an adaptation for feeding on phototoxic Hypericum perforatum. J. Chem. Ecol. 15:875–885.

    Article  CAS  Google Scholar 

  • Schaffner, U., Boevé, J.-L., Gfeller, H., and Schlunegger, U. P. 1994. Sequestration of Veratrum alkaloids by specialist Rhadinoceraea nodicornis Konow (Hymenoptera, Tenthredinidae) and its ecoethological implications. J. Chem. Ecol. 20:3233–3250.

    Article  CAS  Google Scholar 

  • Schmidt, S., Mckinnon, A. E., Moore, C. J., and Walter, G. H. 2010. Chemical detoxification vs mechanical removal of host plant toxins in Eucalyptus feeding sawfly larvae (Hymenoptera: Pergidae). J. Insect Phys. 56:1770–1776.

    Article  CAS  Google Scholar 

  • Sirvent, T., Krasnoff, S. B., and Gibson, D. M. 2003. Induction of hypericins and hyperforins in Hypericum perforatum in response to damage by herbivores. J. Chem. Ecol. 29: 2667–2681.

    Article  PubMed  CAS  Google Scholar 

  • Soelberg, J., Jørgensen, L. B., and Jäger, A. K. 2007. Hyperforin accumulates in the translucent glands of Hypericum perforatum. Ann. Bot. 99:1097–1100.

    Article  PubMed  CAS  Google Scholar 

  • Taeger, A., Altenhofer, E., Blank, S. M., Jansen, E., Kraus, M., Pschorn-Walcher, H., and Ritzau, C. 1998. Kommentare zur Biologie, Verbreitung und Gefährdung der Pflanzenwespen Deutschlands (Hymenoptera, Symphyta), pp. 49–135, in A. Taeger and S. M. Blank (eds.), Pflanzenwespen Deutschlands (Hymenoptera, Symphyta). Kommertierte Bestandsaufnahme. Verlag Goecke & Evers, Keltern.

  • Whitman, D. W., Blum, M. R., and Alsop, D. W. 1990. Allomones: chemicals for defense, pp. 289–351, in D. L. Evans and J. O. Schmidt (eds.). Insect Defenses: Adaptive Mechanisms and Strategies of Prey and Predators. State University of New York Press, Albany, New York.

Download references

Acknowledgments

We thank three anonymous reviewers for their helpful comments. Funding for SLC was provided through a Hertha Firnberg Stipendium (T345-B05) from the Fonds zur Förderung der Wissenschaftlichen Forschung (FWF) in Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Boevé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crockett, S.L., Boevé, JL. Flavonoid Glycosides and Naphthodianthrones in the Sawfly Tenthredo zonula and its Host-Plants, Hypericum perforatum and H. hirsutum . J Chem Ecol 37, 943–952 (2011). https://doi.org/10.1007/s10886-011-0001-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-011-0001-x

Key Words

Navigation