Skip to main content
Log in

Identification of Camphor Oxidation and Reduction Products in Pseudomonas putida: New Activity of the Cytochrome P450cam System

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

P450 enzymes are known for catalyzing hydroxylation reactions of non-activated C-H bonds. For example, P450cam from Pseudomonas putida oxidizes (1R)-(+)-camphor to 5-exo-hydroxy camphor and further to 5-ketocamphor. This hydroxylation reaction proceeds via a catalytic cycle in which the reduction of dioxygen (O2) is coupled to the oxidation of the substrate. We have observed that under conditions of low oxygen, P. putida and isolated P450cam reduce camphor to borneol. We characterized the formation of borneol under conditions of low oxygen or when the catalytic cycle is shunted by artificial oxidants like m-chloro perbenzoic acid, cumene hydroperoxide, etc. We also tested the toxicity of camphor and borneol with P. putida and Escherichia coli. We have found that in P. putida borneol is less toxic than camphor, whereas in E. coli borneol is more toxic than camphor. We discuss a potental ecological advantage of the camphor reduction reaction for P. putida.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Scifinder search (25th January, 2011) for whether the organisms E. coli and P. putida compete with each another in nature yielded no references.

References

  • Aggarwal, V. K., Gultekin, Z., Grainger, R. S., and Adams, H. 1998. (1R,3R)-2-Methylene-1,3-dithiolane 1,3-dioxide: a highly reactive and highly selective chiral ketene equivalent in cycloaddition reactions with a broad range of dienes. J. Chem. Soc.-Perkin Transactions 1:2771–2781.

    Article  Google Scholar 

  • Altun, A., Shaik, S., and Thiel, W. 2007. What is the active species of cytochrome P450 during camphor hydroxylation? QM/MM studies of different electronic states of compound I and of reduced and oxidized iron-oxo intermediates. J. Am. Chem. Soc. 129:8978–8987.

    Article  PubMed  CAS  Google Scholar 

  • Aramaki, H., Koga, H., Sagara, Y., Hosoi, M., and Horiuchi, T. 1993. Complete nucleotide sequence of the 5-exo-hydroxycamphor dehydrogenase gene on the Cam plasmid of Pseudomonas putida (ATCC-17453). Biochim. Biophys. Acta. 1174:91–94.

    PubMed  CAS  Google Scholar 

  • Auclair, K., Moenne-Loccoz, P., and Ortiz De Montellano, P. R. 2001. Roles of the proximal heme thiolate ligand in cytochrome P450cam. J. Am. Chem. Soc. 123:4877–4885.

    Article  PubMed  CAS  Google Scholar 

  • Chefson, A., and Auclair, K. 2006. Progress towards the easier use of P450 enzymes. Mol. Biosyst. 2:462–469.

    Article  PubMed  CAS  Google Scholar 

  • Cryle, M. J., Stok, J. E., and De Voss, J. J. 2003. Reactions catalyzed by bacterial cytochromes P450. Australian J. Chem. 56:749–762.

    Article  CAS  Google Scholar 

  • Darby, N., Lamb, N., and Money, T. 1979. Synthesis and absolute-configuration of Nojigiku alcohol. Can. J. Chem.-Rev. Can. De Chim. 57:742–746.

    Article  CAS  Google Scholar 

  • Dauben, W. G., Fonken, G. J., and Noyce, D. S. 1956. The stereochemistry of hydride reductions. J. Am. Chem. Soc. 78:2579–2582.

    Article  CAS  Google Scholar 

  • Davydov, R., Makris, T.M., Kofman, V., Werst, D. E., Sligar, S. G., and Hoffman, B. M. 2001. Hydroxylation of camphor by reduced oxy-cytochrome P450cam: Mechanistic implications of EPR and ENDOR studies of catalytic intermediates in native and mutant enzymes. J. Am. Chem. Soc. 123:1403–1415.

    Article  PubMed  CAS  Google Scholar 

  • Egawa, T., Shimada, H., and Ishimura, Y. 1994. Evidence for compound I formation in the reaction of cytochrome P450cam with m-chloroperbenzoic acid. Biochem. Biophys. Res. Commun. 201:1464–1469.

    Article  PubMed  CAS  Google Scholar 

  • Gould, P. V., Gelb, M. H., and Sligar, S. G. 1981. Interaction of 5-bromocamphor with cytochrome P450cam - Production of 5-ketocamphor from a mixed spin state hemoprotein. J. Biol. Chem. 256:6686–6691.

    PubMed  CAS  Google Scholar 

  • Guengerich, F. P., and Macdonald, T. L. 1990. Mechanisms of cytochrome P-450 catalysis. FASEB J. 4:2453–2459.

    PubMed  CAS  Google Scholar 

  • Gunsalus, I. C., and Sligar, S. G. 1976. Redox regulation of cytochrome P450cam mixed function oxidation by putidaredoxin and camphor ligation. Biochimie 58:143–147.

    Article  PubMed  CAS  Google Scholar 

  • Gunsalus, I. C., and Wagner, G. C. 1978. Bacterial P450cam methylene monooxygenase components: cytochrome m, putidaredoxin, and putidaredoxin reductase. Methods Enzymol. 52:166–188.

    Article  PubMed  CAS  Google Scholar 

  • Katagiri, M., Ganguli, B. N., and Gunsalus, I. C. 1968. A soluble cytochrome P-450 functional in methylene hydroxylation. J. Biol. Chem. 243:3543–3546.

    PubMed  CAS  Google Scholar 

  • Kinoshita, K., Yang, Y., Koyama, K., Takahashi, K., and Nishino, H. 1999. Inhibitory effect of some triterpenes from cacti on 32Pi-incorporation into phospholipids of HeLa cells promoted by 12-O-tetradecanoylphorbol-13-acetate. Phytomed. 6:73–77.

    CAS  Google Scholar 

  • Lipscomb, J. D., Sligar, S. G., Namtvedt, M. J., and Gunsalus, I. C. 1976. Autooxidation and hydroxylation reactions of oxygenated cytochrome P450cam. J. Biol. Chem. 251:1116–1124.

    PubMed  CAS  Google Scholar 

  • Makris, T. M., Von Koenig, K., Schlichting, I., and Sligar, S. G. 2006. The status of high-valent metal oxo complexes in the P450 cytochromes. J. Inorg. Biochem. 100:507–518.

    Article  PubMed  CAS  Google Scholar 

  • Munro, A. W., and Lindsay, J. G. 1996. Bacterial cytochromes P-450. Mol. Microbiol. 20:1115–1125.

    Article  PubMed  CAS  Google Scholar 

  • Narhi, L. O., and Fulco, A. J. 1986. Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium. J. Biol. Chem. 261:7160–7169.

    PubMed  CAS  Google Scholar 

  • Newcomb, M., Zhang, R., Chandrasena, R. E, Halgrimson, J. A., Horner, J. H., Makris, T. M., and Sligar, S. G. 2006. Cytochrome P450 compound I. J. Am. Chem. Soc. 128:4580–4581.

    Article  PubMed  CAS  Google Scholar 

  • Pochapsky, S. S., Pochapsky, T. C., and Wei, J. W. 2003. A model for effector activity in a highly specific biological electron transfer complex: The cytochrome P450cam-putidaredoxin couple. Biochem. 42:5649–5656.

    Article  Google Scholar 

  • Prasad, B., Lewis, A. R., and Plettner, E. 2011. Enrichment of H 172 O from tap water, characterization of the enriched water, and properties of several 17O-labeled compounds. Anal. Chem. 83:231–239.

    Article  PubMed  CAS  Google Scholar 

  • Rojubally, A. 2007. Linking cytochrome P450cam (CYP101) to its redox partner putidaredoxin and probing new reactions of the cytochrome P450cam system. Ph.D. dissertation, Simon Fraser University, Burnaby, B.C., Canada.

  • Schunemann, V., Lendzian, F., Jung, C., Contzen, J., Barra, A. L., Sligar, S. G., and Trautwein, A. X. 2004. Tyrosine radical formation in the reaction of wild type and mutant cytochrome P450cam with peroxy acids - A multifrequency EPR study of intermediates on the millisecond time scale. J. Biol. Chem. 279:10919–10930.

    Article  PubMed  Google Scholar 

  • Shen, H., and Wang, Y. T. 1995. Simultaneous chromium reduction and phenol degradation in a coculture of Escherichia coli ATCC 33456 and Pseudomonas putida DMP-1. Appl. Environ. Microbiol. 61:2754–2758.

    PubMed  CAS  Google Scholar 

  • Shimada, H., Nagano, S., Hori, H., and Ishimura, Y. 2001. Putidaredoxin-cytochrome P450cam interaction. J. Inorg. Biochem. 83:255–260.

    Article  PubMed  CAS  Google Scholar 

  • Sibbesen, O., De Voss, J. J., and Montellano, P. R. 1996. Putidaredoxin reductase-putidaredoxin-cytochrome P450cam triple fusion protein. Construction of a self-sufficient Escherichia coli catalytic system. J. Biol. Chem. 271:22462–22469.

    Article  PubMed  CAS  Google Scholar 

  • Sligar, S. G., Lipscomb, J. D., Debrunner, P. G., and Gunsalus, I. C. 1974. Superoxide anion production by the autoxidation of cytochrome P450cam. Biochem. Biophys. Res. Commun. 61:290–296.

    Article  PubMed  CAS  Google Scholar 

  • Sono, M., Roach, M. P., Coulter, E. D, and Dawson, J. H. 1996. Heme-containing oxygenases. Chem. Rev. 96:2841–2888.

    Article  PubMed  CAS  Google Scholar 

  • Vrzal, R., Starha, P., Dvorak, Z., and Travnicek, Z. 2010. Evaluation of in vitro cytotoxicity and hepatotoxicity of platinum(II) and palladium(II) oxalato complexes with adenine derivatives as carrier ligands. J. Inorg. Biochem. 104:1130–1132.

    Article  PubMed  CAS  Google Scholar 

  • Winfield, M. D., and Groisman, E. A. 2003. Role of nonhost environments in the lifestyles of Salmonella and Escherichia coli. Appl. Environ. Microbiol. 69:3687–3694.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NSERC (Discovery grant No. 222923-05). We thank the Chem 381 class (Spring 2006) for help in isolating products from P. putida. B. Prasad performed experiments with the purified P450cam system, with camphor/borneol toxicity, the IC50 experiments and wrote the paper. A. Rojubally performed the standard syntheses and time course experiments with P. putida. E. Plettner designed and planned the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika Plettner.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESMdoc (DOC 233 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, B., Rojubally, A. & Plettner, E. Identification of Camphor Oxidation and Reduction Products in Pseudomonas putida: New Activity of the Cytochrome P450cam System. J Chem Ecol 37, 657–667 (2011). https://doi.org/10.1007/s10886-011-9959-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-011-9959-7

Key Words

Navigation