Skip to main content
Log in

Insect Egg Deposition Induces Indirect Defense and Epicuticular Wax Changes in Arabidopsis thaliana

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Egg deposition by the Large Cabbage White butterfly Pieris brassicae on Brussels sprouts plants induces indirect defense by changing the leaf surface, which arrests the egg parasitoid Trichogramma brassicae. Previous studies revealed that this indirect defense response is elicited by benzyl cyanide (BC), which is present in the female accessory reproductive gland (ARG) secretion and is released to the leaf during egg deposition. Here, we aimed (1) to elucidate whether P. brassicae eggs induce parasitoid-arresting leaf surface changes in another Brassicacean plant, i.e., Arabidopsis thaliana, and, if so, (2) to chemically characterize the egg-induced leaf surface changes. Egg deposition by P. brassicae on A. thaliana leaves had similar effects to egg deposition on Brussels sprouts with respect to the following: (a) Egg deposition induced leaf surface changes that arrested T. brassicae egg parasitoids. (b) Application of ARG secretion of mated female butterflies or of BC to leaves had the same inductive effects as egg deposition. Based on these results, we conducted GC-MS analysis of leaf surface compounds from egg- or ARG-induced A. thaliana leaves. We found significant quantitative differences in epicuticular waxes compared to control leaves. A discriminant analysis separated surface extracts of egg-laden, ARG-treated, untreated control and Ringer solution-treated control leaves according to their quantitative chemical composition. Quantities of the fatty acid tetratriacontanoic acid (C34) were significantly higher in extracts of leaf surfaces arresting the parasitoids (egg-laden or ARG-treated) than in respective controls. In contrast, the level of tetracosanoic acid (C24) was lower in extracts of egg-laden leaves compared to controls. Our study shows that insect egg deposition on a plant can significantly affect the quantitative leaf epicuticular wax composition. The ecological relevance of this finding is discussed with respect to its impact on the behavior of egg parasitoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Latief, M. and Hilker, M. 2008. Innate immunity: eggs of Manduca sexta are able to respond to parasitism by Trichogramma evanescens. Insect Biochem. Mol. Biol. 38:136–145.

    Article  PubMed  CAS  Google Scholar 

  • Andersson, J., Borg-Karlson, A.-K., and Wiklund, C. 2003. Antiaphrodisiacs in Pierid butterflies: a theme with variation! J. Chem. Ecol. 29:1489–1499.

    Article  PubMed  CAS  Google Scholar 

  • Avato, P., Bianchi, G., and Pogna, N. 1990. Chemosystematics of surface lipids from maize and some related species. Phytochemistry 29:1571–1576.

    Article  CAS  Google Scholar 

  • Balbyshev, N. F. and Lorenzen, J. H. 1997. Hypersensitivity and egg drop: a novel mechanism of host plant resistance to Colorado potato beetle (Coleoptera: Chrysomelidae). J. Econ. Entomol. 90:652–657.

    Google Scholar 

  • Bernays, E. A. and Chapman, R. F. 1997. Host-Plant Selection by Phytophagous Insects. Chapman & Hall, New York.

    Google Scholar 

  • Beyaert, I., Wäschke, N., Scholz, A., Varama, M., Reinecke, A., and Hilker, M. 2010. Relevance of resource-indicating key volatiles and habitat odour for insect orientation. Anim. Behav. 79:1077–1086.

    Article  Google Scholar 

  • Bruce, T. J. A., Midega, C. A. O., Birkett, M. A., Pickett, J. A., and Khan, Z. R. 2010. Is quality more important than quantity? Insect behavioural responses to changes in a volatile blend after stemborer oviposition on an African grass. Biol. Lett. 6:314–317.

    Article  PubMed  CAS  Google Scholar 

  • Chang, G. C., Neufeld, J., Durr, D., Duetting, P. S., and Eigenbrode, S. D. 2004. Waxy bloom in peas influences the performance and behavior of Aphidius ervi, a parasitoid of the pea aphid. Entomol. Exp. Appl. 110:257–265.

    Article  Google Scholar 

  • Colazza, S., Aquila, G., De Pasquale, C., Peri, E., and Millar, J. G. 2007. The egg parasitoid Trissolcus basalis uses n-nonadecane, a cuticular hydrocarbon from its stink bug host Nezara viridula, to discriminate between female and male hosts. J. Chem. Ecol. 33:1405–1420.

    Article  PubMed  CAS  Google Scholar 

  • Colazza, S., Lo Bue, M., Lo Giudice, D., and Peri, E. 2009. The response of Trissolcus basalis to footprint contact kairomones from Nezara viridula females is mediated by leaf epicuticular waxes. Naturwissenschaften 96:975–981.

    Article  PubMed  CAS  Google Scholar 

  • Conti, E., Salerno, G., Leombruni, B., Frati, F., and Bin, F. 2010. Short-range allelochemicals from a plant-herbivore association: a singular case of oviposition-induced synomone for an egg parasitoid. J. Exp. Biol. 213:3911–3919.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, L. D., Doss, R. P., Price, R., Peterson, K., and Oliver, J. E. 2005. Application of bruchin B to pea pods results in the up-regulation of CYP93C18, a putative isoflavone synthase gene, and an increase in the level of pisatin, an isoflavone phytoalexin. J. Exp. Bot. 56:1229–1237.

    Article  PubMed  CAS  Google Scholar 

  • Desurmont, G. A. and Weston, P. A. 2011. Aggregative oviposition of a phytophagous beetle overcomes egg-crushing plant defences. Ecol. Entomol. 36:335–343.

    Article  Google Scholar 

  • Doss, R. P. 2005. Treatment of pea pods with bruchin B results in up-regulation of a gene similar to MtN19. Plant Physiol. Biochem. 43:225–231.

    Article  PubMed  CAS  Google Scholar 

  • Doss, R. P., Proebsting, W. M., Potter, S. W., and Clement, S. L. 1995. Response of Np mutant of pea (Pisum sativum L.) to pea weevil (Bruchus pisorum L.) oviposition and extracts. J. Chem. Ecol. 21:97–106.

    Article  CAS  Google Scholar 

  • Doss, R. P., Oliver, J. E., Proebsting, W. M., Potter, S. W., Kuy, S. R., Clement, S. L., Williamson, R. T., Carney, J. R., and Devilbiss, E. D. 2000. Bruchins: insect-derived plant regulators that stimulate neoplasm formation. Proc. Natl. Acad. Sci. USA 97:6218–6223.

    Article  PubMed  CAS  Google Scholar 

  • Dutton, A., Mattiacci, L., Amadò, R., and Dorn, S. 2002. A novel function of the triterpene squalene in a tritrophic system. J. Chem. Ecol. 28:103–116.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, P. B. 1982. Do waxes on juvenile Eucalyptus leaves provide protection from grazing insects? Aust. J. Ecol. 7:347–352.

    Article  Google Scholar 

  • Eigenbrode, S. D. 2004. The effects of plant epicuticular waxy blooms on attachment and effectiveness of predatory insects. Arthropod. Struct. Dev 33:91–102.

    Article  PubMed  CAS  Google Scholar 

  • Eigenbrode, S. D. and Espelie, K. E. 1995. Effects of plant epicuticular lipids on insect herbivores. Annu. Rev. Entomol. 40:171–194.

    Article  Google Scholar 

  • Espelie, K. E., Bernays, E. A., and Brown, J. J. 1991. Plant and insect cuticular lipids serve as behavioral cues for insects. Arch. Insect Biochem. 17:223–233.

    Article  CAS  Google Scholar 

  • Fatouros, N. E., Bukovinszkine’Kiss, G., Kalkers, L. A., Soler Gamborena, R., Dicke, M., and Hilker, M. 2005. Oviposition-induced plant cues: do they arrest Trichogramma wasps during host location? Entomol. Exp. Appl. 115:207–215.

    Article  Google Scholar 

  • Fatouros, N. E., Broekgaarden, C., Fatouros, N. E., Broekgaarden, C., Bukovinszkine’Kiss, G., Van Loon, J. J. A., Mumm, R., Huigens, M. E., Dicke, M., and Hilker, M. 2008. Male-derived butterfly anti-aphrodisiac mediates indirect plant defense. Proc. Natl. Acad. Sci. USA 105:10033–10038.

    Article  PubMed  CAS  Google Scholar 

  • Fatouros, N. E., Pashalidou, F. G., Aponte Cordero, W. V., Van Loon, J. J. A., Mumm, R., Dicke, M., Hilker, M., and Huigens, M. E. 2009. Anti-aphrodisiac compounds of male butterflies increase the risk of egg parasitoid attack by inducing plant synomone production. J. Chem. Ecol. 35:1373–1381.

    Article  PubMed  CAS  Google Scholar 

  • Feltwell, J. 1982. Large White Butterfly: The Biology, Biochemistry and Physiology of Pieris brassicae (Linnaeus). Dr. W. Junk, The Hague.

    Google Scholar 

  • Greany, P. D., Tumlinson, J. H., Chambers, D. L., and Boush, G. M. 1977. Chemically mediated host finding by Biosteres (Opius) longicaudatus, a parasitoid of tephritid fruit fly larvae. J. Chem. Ecol. 10:1251–1264.

    Google Scholar 

  • Hilker, M. and Meiners, T. 2006. Early herbivore alert: insect eggs induce plant defense. J. Chem. Ecol. 32:1379–1397.

    Article  PubMed  CAS  Google Scholar 

  • Hilker, M. and Meiners, T. 2010. How do plants “notice” attack by herbivorous arthropods? Biol. Rev. 85:267–280.

    Article  PubMed  Google Scholar 

  • Hilker, M. and Meiners, T. 2011. Plants and insect eggs: how do they affect each other? Phytochemistry 72:1612–1623.

    Article  PubMed  CAS  Google Scholar 

  • Jenks, M. A., Tuttle, H. A., Eigenbrode, S. D., and Feldmann, K. A. 1995. Leaf epicuticular waxes of eceriferum mutants in Arabidopsis. Plant Physiol. 108:369–377.

    PubMed  CAS  Google Scholar 

  • Jenks, M. A., Rashotte, A. M., Tuttle, H. A., and Feldmann, K. A. 1996a. Mutants in Arabidopsis thaliana altered in epicuticular wax and leaf morphology. Plant Physiol. 110:377–385.

    CAS  Google Scholar 

  • Jenks, M. A., Tuttle, H. A., and Feldman, K. A. 1996b. Changes in epicuticular waxes on wild type and eceriferum mutants in Arabidopsis during development. Phytochemistry 42:29–34.

    Article  CAS  Google Scholar 

  • Jenks, M. A., Eigenbrode, S. D., and Lemieux, B. 2002. Cuticular waxes of Arabidopsis, pp. 1–24, in C. Somerville and E. Meyerowitz (eds.), The Arabidopsis Book 1: e0016. American Society of Plant Biologists, Rockville.

    Google Scholar 

  • Jetter, E. and Schäffer, S. 2001. Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development. Plant Physiol. 126:1725–1737.

    Article  PubMed  CAS  Google Scholar 

  • Jetter, R., Schäffer, S., and Riederer, M. 2000. Leaf cuticular waxes are arranged in chemically and mechanically distinct layers: evidence from Prunus laurocerasus L. Plant Cell Environ. 23:619–628.

    Article  CAS  Google Scholar 

  • Jetter, R., Kunst, L., and Samuels, A. L. 2006. Composition of plant cuticular waxes, pp. 145–181, in M. Riederer and C. Müller (eds.), Biology of the Plant Cuticle. Annual Plant Reviews, Vol. 23. Blackwell Publishing, Oxford.

    Chapter  Google Scholar 

  • Kerstiens, G. 1996. Plant Cuticles: An Integrated Functional Approach. BIOS Scientific Publishers, Oxford.

    Google Scholar 

  • Knutson, A. 1998. The Trichogramma Manual. b-6071. Texas Agriculture Extension Service Texas A&M University System, College Station.

    Google Scholar 

  • Koepke, D., Schroeder, R., Fischer, H. M., Gershenzon, J., Hilker, M., and Schmidt, A. 2008. Does egg deposition by herbivorous pine sawflies affect transcription of sesquiterpene synthases in pine? Planta 228:427–438.

    Article  CAS  Google Scholar 

  • Koepke, D., Beyaert, I., Gershenzon, J., Hilker, M., and Schmidt, A. 2010. Species-specific responses of pine sesquiterpene synthases to sawfly oviposition. Phytochemistry 71:909–917.

    Article  CAS  Google Scholar 

  • Kosma, D. K., Bourdenx, B., Bernard, A., Parsons, E. P., Lü, S., Joubès, J., and Jenks, M. A. 2009. The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol. 151:1918–1929.

    Article  PubMed  CAS  Google Scholar 

  • Kováts, E. 1965. Gas chromatographic characterization of organic substances in the retention index system. Adv. Chromatogr. 1:229–247.

    Google Scholar 

  • Kunst, L. and Samuels, A. L. 2003. Biosynthesis and secretion of plant cuticular wax. Prog. Lipid Res. 42:51–80.

    Article  PubMed  CAS  Google Scholar 

  • Little, D., Gouhier-Darimont, C., Bruessow, F., and Reymond, P. 2007. Oviposition by pierid butterflies triggers defense responses in Arabidopsis. Plant Physiol. 143:784–800.

    Article  PubMed  CAS  Google Scholar 

  • Lo Giudice, D., Peri, E., Lo Bue, M., and Colazza, S. 2010. Plant surfaces of vegetable crops mediate interactions between chemical footprints of true bugs and their egg parasitoids. Commun. Integr. Biol. 3:70–74.

    Article  Google Scholar 

  • Müller, C. 2006. Plant-insect interactions on cuticular surfaces, pp. 398–422, in M. Riederer and C. Müller (eds.), Biology of the plant cuticle. Annual plant reviews, vol. 23. Blackwell Publishing, Oxford.

    Chapter  Google Scholar 

  • Müller, C. 2008. Resistance at the plant cuticle, pp. 107–129, in A. Schaller (ed.), Induced Plant Resistance to Herbivory. Springer, Berlin.

    Chapter  Google Scholar 

  • Noldus, L. P. J. J., van Lenteren, J. C., and Lewis, W. J. 1991. How Trichogramma parasitoids use moth sex pheromones as kairomones: orientation behaviour in a wind tunnel. Physiol. Entomol. 16:313–327.

    Article  Google Scholar 

  • Petzold-Maxwell, J., Wong, S., Arellano, C., and Gould, F. 2011. Host plant direct defence against eggs of its specialist herbivore, Heliothis subflexa. Ecol. Entomol. 36:700–708.

    Article  Google Scholar 

  • Pinto, J. D. and Stouthammer, R. 1994. Systematics of the Trichogrammatidae with emphasis on Trichogramma, pp. 1–36, in E. Wajnberg and S. A. Hassan (eds.), Biological Control with Egg Parasitoids. CAB International, Wallingford.

    Google Scholar 

  • Reifenrath, K., Riederer, M., and Müller, C. 2005. Leaf surface wax layers of Brassicaceae lack feeding stimulants for Phaedon cochleariae. Entomol. Exp. Appl. 115:41–50.

    Article  CAS  Google Scholar 

  • Riederer, M. and Müller, C. 2006. Biology of the Plant Cuticle. Blackwell Publishing, Oxford.

    Book  Google Scholar 

  • Riederer, M. and Schneider, G. 1990. The effect of the environment on the permeability and composition of Citrus leaf cuticles. Planta 180:154–165.

    Article  CAS  Google Scholar 

  • Rostás, M. and Woelfling, M. 2009. Caterpillar footprints as host location kairomones for Cotesia marginiventris. J. Chem. Ecol. 35:20–27.

    Article  PubMed  Google Scholar 

  • Rostás, M., Ruf, D., Zabka, V., and Hildebrandt, U. 2008. Plant surface wax affects parasitoid’s response to host footprints. Naturwissenschaften 95:997–1002.

    Article  PubMed  Google Scholar 

  • Rutledge, C. E. 1996. A survey of identified kairomones and synomones used by insect parasitoids to locate and accept their hosts. Chemoecology 7:121–131.

    Article  CAS  Google Scholar 

  • Samuels, L., Kunst, L., and Jetter, R. 2008. Sealing plant surfaces: cuticular wax formation by epidermal cells. Annu. Rev. Plant Biol. 59:683–707.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder, R., Wurm, L., Varama, M., Meiners, T., and Hilker, M. 2008. Unusual mechanims involved in learning of oviposition-induced host plant odours in an egg parasitoid? Anim. Behav. 75:1423–1430.

    Article  Google Scholar 

  • Seino, Y., Suzuki, Y., and Sogawa, K. 1996. An ovicidal substance produced by rice plants in response to oviposition by the whitebacked planthopper, Sogatella furcifera (Horváth) (Homoptera: Delphacidae). Appl. Entomol. Zool. 31:467–473.

    CAS  Google Scholar 

  • Shapiro, A. M. and de Vay, J. E. 1987. Hypersensitivity reaction of Brassica nigra L. (Cruciferae) kills eggs of Pieris butterflies (Lepidoptera: Pieridae). Oecologia 71:631–632.

    Article  Google Scholar 

  • Shepherd, T. and Griffiths, D. W. 2006. The effect of stress on plant cuticular waxes. New Phytol. 171:469–499.

    Article  PubMed  CAS  Google Scholar 

  • Shu, S., Swedenborg, P. D., and Jones, R. L. 1990. A kairomone for Trichogramma nubilale (Hymenoptera: Trichogrammatidae). Isolation, identification and synthesis. J. Chem. Ecol. 16:521–529.

    Article  CAS  Google Scholar 

  • Sokal, R. R. and Rohlf, J. F. 1969. Biometry. W. H. Freeman and Co., San Francisco.

    Google Scholar 

  • Suzuki, Y., Sogawa, K., and Seino, Y. 1996. Ovicidal reaction of rice plants against the Whitebacked planthopper Sogatella furcifera Horváth (Homoptera: Delphacidae. Appl. Entomol. Zool. 31:111–118.

    Google Scholar 

  • Tamiru, A., Bruce, T. J. A., Woodcock, C. M., Caulfield, J. C., Midega, C. A. O., Ogol, C. K. P. O., Mayon, P., Birkett, M. A., Pickett, J. A., and Khan, Z. R. 2011. Maize landraces recruit egg and larval parasitoids in response to egg deposition by a herbivore. Ecol. Lett. 14:1075–1083.

    Article  PubMed  Google Scholar 

  • Wen, M. and Jetter, R. 2009. Composition of secondary alcohols, ketones, alkanediols, and ketols in Arabidopsis thaliana cuticular waxes. J. Exp. Bot. 60:1811–1821.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ute Braun for rearing plants and insects. This work was funded by the German Research Foundation (DFG-GRK 837/2-06) and the Netherlands Organization for Scientific Research NWO/ALW Veni grant 863.09.002 (to N.E.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Hilker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Comparison of cuticular wax composition of leaves of Arabidopsis thaliana in dependence of plant ecotype and extraction method (literature data and own data) (PDF 38 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blenn, B., Bandoly, M., Küffner, A. et al. Insect Egg Deposition Induces Indirect Defense and Epicuticular Wax Changes in Arabidopsis thaliana . J Chem Ecol 38, 882–892 (2012). https://doi.org/10.1007/s10886-012-0132-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-012-0132-8

Keywords

Navigation