Skip to main content
Log in

Mosaic Eucalypt Trees Suggest Genetic Control at a Point That Influences Several Metabolic Pathways

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Mosaic trees contain more than one phenotype. The two Eucalyptus mosaic trees studied here (E. melliodora and E. sideroxylon) are predominantly susceptible to insect herbivory, with the leaves on a single large branch on each tree resisting herbivory. We used gas chromatography–mass spectrometry and high-pressure liquid chromatography to analyze the chemical profile of leaves of the mosaic trees, as well as leaves of adjacent non-mosaic con-specifics. We show that the leaves of the two phenotypes are distinctly different. Compared to the susceptible (S) leaves on the same tree, the resistant (R) leaves on the mosaic trees had low concentrations of sesquiterpenes (E. melliodora: 2 vs. 24 mg·g−1 dry matter; E. sideroxylon: 8 vs. 22 mg·g−1 dry matter), high concentrations of FPCs (E. melliodora: 5.4 vs. 0.3 mg·g−1 dry matter; E. sideroxylon: 9.8 vs. 0.2 mg·g−1 dry matter) but similar concentrations of nitrogen (E. melliodora: 15.4 vs. 16.8 mg·g−1 dry matter; E. sideroxylon: 13.1 vs. 14.0 mg·g−1 dry matter). The only difference between the two mosaic trees was in the levels of monoterpenes. The R leaves from the mosaic E. melliodora contained higher concentrations of monoterpenes compared to the S leaves (12 vs. 6 mg·g−1 dry matter). In contrast, the leaves from the E. sideroxylon mosaic contained much higher concentrations of monoterpenes with a reversed pattern (R: 26 vs. S: 45 mg·g−1 dry matter). There were qualitative differences too on the mosaic trees. The R leaves of both species contained much higher concentrations of the monoterpene, 1,8-cineole, whereas the S chemotype of E. sideroxylon only had high concentrations of phellandrenes. Furthermore, the chemical differences between leaves on the R and S branches of the mosaic trees resembled those between the leaves of R and S con-specific trees in the same population. We use these data and knowledge of secondary metabolite biosynthesis to propose that high-level transcriptional differences may control the profile of specialized metabolites in eucalypts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andrew, R. L., Wallis, I. R., Harwood, C. E., Henson, M., and Foley, W. J. 2007. Heritable variation in the foliar secondary metabolite sideroxylonal in Eucalyptus confers cross-resistance to herbivores. Oecologia 153:891–901.

    Article  PubMed  Google Scholar 

  • Andrew, R. L., Wallis, I. R., Harwood, C. E., and Foley, W. J. 2010. Genetic and environmental contributions to variation and population divergence in a broad-spectrum foliar defence of Eucalyptus tricarpa. Ann. Bot. 105:707–717.

    Article  PubMed  Google Scholar 

  • Arimura, G., Ozawa, R., Kugimiya, S., Takabayashi, J., and Bohlmann, J. 2004. Herbivore-induced defense response in a model legume. Two-spotted spider mites induce emission of (E)-beta-ocimene and transcript accumulation of (E)-beta-ocimene synthase in Lotus japonicus. Plant Physiol. 135:1976–1983.

    Article  PubMed  CAS  Google Scholar 

  • Brooker, M. I. H. 2000. A new classification of the genus Eucalyptus L'Her. (Myrtaceae). Austral. System. Bot. 13:79–148.

    Article  Google Scholar 

  • Bryant, J., Chapin III, F., and Klein, D. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–368.

    Article  CAS  Google Scholar 

  • Butcher, P. A., Doran, J. C., and Slee, M. U. 1994. Intraspecific variation in the leaf oils of Melaleuca alternifolia (Myrtaceae). Biochem. System. Ecol. 22:419–430.

    Article  CAS  Google Scholar 

  • Crous, P. W., Summerell, B. A., Carnegie, A., Mohammed, C., Himaman, W., and Groenewald, J. Z. 2007. Foliicolous Mycosphaerella spp. and their anamorphs on Corymbia and Eucalyptus. Fungal Diversity 26:143–185.

    Google Scholar 

  • Degenhardt, J. and Gershenzon, J. 2000. Demonstration and characterization of (E)-nerolidol synthase from maize: a herbivore-inducible terpene synthase participating in (3E)-4,8-dimethyl-1,3,7-nonatriene biosynthesis. Planta 210:815–822.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, P. B., Wanjura, W. J., and Brown, W. V. 1993. Selective herbivory by Christmas beetles in response to intraspecific variation in Eucalyptus terpenoids. Oecologia 95:551–557.

    Google Scholar 

  • Edwards, P. B., Wanjura, W. J., Brown, W. V., and Dearn, J. M. 1990. Mosaic resistance in plants. Nature 347:434.

    Article  Google Scholar 

  • Eschler, B. M. and Foley, W. J. 1999. A new sideroxylonal from Eucalyptus melliodora. Austral. J. Chem. 52:157–158.

    Article  CAS  Google Scholar 

  • Gill, D. E. 1986. Individual plants as genetic mosaics: ecological organisms versus evolutionary individuals, pp. 321–343, in M. J. Crawley (ed.), Plant Ecology. Blackwell Scientific Publications, Carlton City.

    Google Scholar 

  • Halliwell, B. 1999. Oxygen and nitrogen are pro-carcinogens. Damage to DNA by reactive oxygen, chlorine and nitrogen species: measurement, mechanism and the effects of nutrition. Mut. Res. Genet. Toxicol. Environ. Mutagen. 443:37–52.

    Article  CAS  Google Scholar 

  • Henery, M. L., Moran, G. F., Wallis, I. R., and Foley, W. J. 2007. Identification of quantitative trait loci influencing foliar concentrations of terpenes and formylated phloroglucinol compounds in Eucalyptus nitens. New Phytol. 176:82–95.

    Article  PubMed  CAS  Google Scholar 

  • Herrera, C. M. 2009. Multiplicity in unity: plant subindividual variation and interactions with animals, in J. N. Thompson (ed.), The University of Chicago Press, Chicago.

  • Joseph, G., Kelsey, R. G., Moldenke, A. F., Miller, J. C., Berry, R. E., and Wernz, J. G. 1993. Effects of nitrogen and Douglas-fir allelochemicals on development of the gypsy moth, Lymantria dispar. J. Chem. Ecol. 19:1245–1263.

    Article  CAS  Google Scholar 

  • Keane, P. J., Kile, G. A., and Podger, F. D. 2000. Diseases and Pathogens of Eucalypts. CSIRO Publishing, Collingwood.

    Google Scholar 

  • Keszei, A., Brubaker, C. L., and Foley, W. J. 2008. A molecular perspective on terpene variation in Australian Myrtaceae. Austral. J. Bot. 56:197–213.

    Article  CAS  Google Scholar 

  • Kleine, S. and Müller, C. 2011. Intraspecific plant chemical diversity and its relation to herbivory. Oecologia 166:175–186.

    Article  PubMed  Google Scholar 

  • Külheim, C., Webb, H., Yeoh, S. H., Wallis, I., Moran, G., and Foley, W. 2011. Using the Eucalyptus genome to understand the evolution of plant secondary metabolites in the Myrtaceae. BMC Proceedings 5(Suppl 7):O11.

    Article  Google Scholar 

  • Lawler, I. R., Stapley, J., Foley, W. J., and Eschler, B. M. 1999. Ecological example of conditioned flavor aversion in plant–herbivore interactions: effect of terpenes of Eucalyptus leaves on feeding by common ringtail and brushtail possums. J. Chem. Ecol. 25:401–415.

    Article  CAS  Google Scholar 

  • Marcotrigiano, M. 2000. Herbivory could unlock mutations sequestered in stratified shoot apices of genetic mosaics. Am. J. Bot. 87:355–361.

    Article  PubMed  CAS  Google Scholar 

  • Matsuki, M., Foley, W. J., and Floyd, R. B. 2011. Role of volatile and nonvolatile plant secondary metabolites in host tree selection by Christmas beetles. J. Chem. Ecol. 37:286–300.

    Article  PubMed  CAS  Google Scholar 

  • Mcgregor, S. E. 1976. Insect Pollination of Cultivated Crop Plants: USDA Agriculture Handbook 496. Washington, D.C.

  • Moore, B. D., Foley, W. J., Wallis, I. R., Cowling, A., and Handasyde, K. A. 2005. Eucalyptus foliar chemistry explains selective feeding by koalas. Biol. Lett. 1:64–67.

    Article  PubMed  CAS  Google Scholar 

  • Moore, B. D., Wallis, I. R., Palá-Paúl, J., Brophy, J. J., Willis, R. H., and Foley, W. J. 2004. Antiherbivore chemistry of Eucalyptus - cues and deterrents for marsupial folivores. J. Chem. Ecol. 30:1743–1769.

    Article  PubMed  CAS  Google Scholar 

  • Morrow, P. A. and Fox, L. R. 1980. Effects of variation in Eucalyptus essential oil yield on insect growth and grazing damage. Oecologia 45:209–219.

    Article  Google Scholar 

  • Padovan, A., Keszei, A., Koellner, T. G., Degenhardt, J., and Foley, W. J. 2010. The molecular basis of host plant selection in Melaleuca quinquenervia by a successful biological control agent. Phytochemistry 71:1237–1244.

    Article  PubMed  CAS  Google Scholar 

  • Penfold, A. R. and Morrison, F. R. 1937. The occurrence of a number of varieties of Euclayptus radiata (E. numerosa) as determined by chemical analyses of the essential oils. Part II. J. Roy. Soc. New South Wales 20:375–377.

    Google Scholar 

  • Pichersky, E., Noel, J. P., and Dudareva, N. 2006. Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science 311:808–811.

    Article  PubMed  CAS  Google Scholar 

  • Ramanoelina, P. A. R., Viano, J., Bianchini, J. P., and Gaydou, E. M. 1994. Occurence of various chemotypes in Niaouli (Melalecua quinquenervia) essential oils from Madagascar using multivariate statistical analysis. J. Agr. Food Chem. 42:1177–1182.

    Article  CAS  Google Scholar 

  • Slee, A. V., Brooker, M. I. H., Duffy, S. M., and West, J. G. 2006. EUCLID Eucalypts of Australia, 3rd ed. CSIRO, Canberra.

    Google Scholar 

  • Southwell, I. A. and Russell, M. F. 2002. Volatile oil comparison of cotyledon leaves of chemotypes of Melaleuca alternifolia. Phytochemistry 59:391–393.

    Article  PubMed  CAS  Google Scholar 

  • Trilles, B. L., Bombarda, I., Bouraïma-Madjebi, S., Raharivelomanana, P., Bianchini, J.-P., and Gaydou, E. M. 2006. Occurrence of various chemotypes in niaouli [Melaleuca quinquenervia (Cav.) S. T. Blake] essential oil from New Caledonia. Flavour Frag J. 21:677–682.

    Article  CAS  Google Scholar 

  • Wallis, I. R. and Foley, W. J. 2005. The rapid determination of sideroxylonals in Eucalyptus foliage by extraction with sonication followed by HPLC. Phytochem. Anal. 16:49–54.

    Article  PubMed  CAS  Google Scholar 

  • Wallis, I. R., Keszei, A., Henery, M. L., Moran, G. F., Forrester, R., Maintz, J., Marsh, K. J., Andrew, R. L., and Foley, W. J. 2011. A chemical perspective on the evolution of variation in Eucalyptus globulus. Perspectives in Plant Ecology. Evolut. Syst. 13:305–318.

    Google Scholar 

  • Whitham, T. G. and Slobodchikoff, C. N. 1981. Evolution by individuals, plant-herbivore interactions, and mosaics of genetic variability: the adaptive significance of somatic mutations in plants. Oecologia 49:287–292.

    Article  Google Scholar 

Download references

Acknowledgements

Mosaic trees came to the attention of scientists through the keen observations of Mr Kevin Barker of Yeoval NSW. Dr Penny Edwards and Dr Wolf Wanjura of CSIRO kindly showed us the trees and facilitated our work in many ways. We thank the late Mr Herb Healey, the late Mr Kevin Barker, Mr Bruce Lees, and Mr Simon Dwyer for allowing us access to their properties. We also thank Ms Jessie Au and Ms Hannah Windley for their assistance with nitrogen analysis. This work was supported by a Discovery grant from the Australian Research Council to WJF (DP0877063) and an Australian Geographic Seed Grant to AP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Padovan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padovan, A., Keszei, A., Wallis, I.R. et al. Mosaic Eucalypt Trees Suggest Genetic Control at a Point That Influences Several Metabolic Pathways. J Chem Ecol 38, 914–923 (2012). https://doi.org/10.1007/s10886-012-0149-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-012-0149-z

Keywords

Navigation