Skip to main content
Log in

Abiotic Induction Affects the Costs and Benefits of Inducible Herbivore Defenses in Datura wrightii

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

We evaluated the costs and benefits of continuous high-level expression of defenses relative to naturally-induced defenses in field-grown Datura wrightii in the presence and absence of herbivores. We induced D. wrightii plants with monthly applications of the plant hormone methyl jasmonate (MeJA) and assessed levels of inducible proteinase inhibitors (Pins). MeJA application increased Pin production by 124 %, whereas the increase in Pins due to herbivory was more modest (36 %). Pin induction was costly and significantly reduced plant fitness compared to unmanipulated plants both in the presence and absence of herbivores. Although MeJA-treated plants exposed to herbivory suffered significantly less herbivore damage than unmanipulated plants exposed to herbivory, this was not accompanied by a corresponding fitness benefit. In contrast to glasshouse studies in which protected plants never expressed Pins, Pin induction occurred in field-grown plants not treated with MeJA and completely protected from herbivory. Subsequent experiments confirmed that putative herbivore defenses can be induced abiotically in D. wrightii as: 1) Pin levels did not differ significantly between field-grown plants protected from herbivory and plants exposed to chronic herbivory over the full season; and 2) plants exposed to ambient UV-B light in the absence of herbivory expressed low levels of Pins after two wk of exposure, whereas plants protected from UV-B remained uninduced. The costs of induced responses may be relatively easily determined under field conditions, but there may be many inducing agents in the field, and the benefits of induction may be difficult to associate with any single inducing agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrawal, A. A. 2000. Benefits and costs of induced plant defense for Lepidium virginicum (Brassicaceae). Ecology 81:1804–1813.

    Google Scholar 

  • Baldwin, I. T. 1998. Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc. Natl. Acad. Sci. USA 95:8113–8118.

    Article  PubMed  CAS  Google Scholar 

  • Barton, K. E. and Koricheva, J. 2010. The ontogeny of plant defense and herbivory: Characterizing general patterns using meta-analysis. Am. Nat. 175:481–493.

    Article  PubMed  Google Scholar 

  • Cipollini, D. 2007. Consequences of the overproduction of methyl jasmonate on seed production, tolerance to defoliation and competitive effect and response of Arabidopsis thaliana. New Phytol. 173:146–153.

    Article  PubMed  CAS  Google Scholar 

  • Cipollini, D. and Heil, M. 2010. Costs and benefits of induced resistance to herbivores and pathogens in plants. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 5:1–25.

    Article  Google Scholar 

  • Cipollini, D. F. 1997. Wind-induced mechanical stimulation increases pest resistace in common bean. Oecologia 111:84–90.

    Article  Google Scholar 

  • Conconi, A., Smerdon, M. J., Howe, G. A., and Ryan, C. A. 1996. The octadecanoid signalling pathway in plants mediates a response to ultraviolet radiation. Nature 383:826–829.

    Article  PubMed  CAS  Google Scholar 

  • Demkura, P. V., Abdala, G., Baldwin, I. T., and Ballare, C. L. 2010. Jasmonate-dependent and -independent pathways mediate specific effects of solar ultraviolet-B radiation on leaf phenolics and antiherbivore defense. Plant Physiol. 152:1084–1095.

    Article  PubMed  CAS  Google Scholar 

  • Dombrowski, J. E. 2003. Salt stress activation of wound-related genes in tomato plants. Plant Physiol. 132:2098–2107.

    Article  PubMed  CAS  Google Scholar 

  • Elle, E. and Hare, J. D. 2000. No benefit of glandular trichome production in natural populations of Datura wrightii? Oecologia 123:57–65.

    Article  Google Scholar 

  • Elle, E., van Dam, N. M., and Hare, J. D. 1999. Cost of glandular trichomes, a "resistance" character in Datura wrightii Regel (Solanaceae). Evolution 53:22–35.

    Article  Google Scholar 

  • English-Loeb, G., Stout, M. J., and Duffey, S. S. 1997. Drought stress in tomatoes: Changes in plant chemistry and potential nonlinear consequences for insect herbivores. Oikos 79:456–468.

    Article  Google Scholar 

  • Fornoni, J., Valverde, P. L., and Nunez-Farfan, J. 2003. Quantitative genetics of plant tolerance and resistance against natural enemies of two natural populations of Datura stramonium. Evol. Ecol. Res. 5:1049–1065.

    Google Scholar 

  • Hare, J. D. 2007. Variation in herbivore and methyl jasmonate-induced volatiles among genetic lines of Datura wrightii. J. Chem. Ecol. 33:2028–2043.

    Article  PubMed  CAS  Google Scholar 

  • Hare, J. D. 2010. Ontogeny and season constrain the production of herbivore-inducible plant volatiles in the field. J. Chem. Ecol. 36:1363–1374.

    Article  PubMed  CAS  Google Scholar 

  • Hare, J. D. and Elle, E. 2002. Variable impact of diverse insect herbivores on dimorphic Datura wrightii. Ecology 83:2711–2720.

    Article  Google Scholar 

  • Hare, J. D. and Smith, J. L. 2005. Competition, herbivory, and reproduction of trichome phenotypes of Datura wrightii. Ecology 86:334–339.

    Article  Google Scholar 

  • Hare, J. D. and Sun, J. 2011. Production of herbivore-induced plant volatiles is constrained seasonally in the field but predation on herbivores is not. J. Chem. Ecol. 37:430–442.

    Article  PubMed  Google Scholar 

  • Hare, J. D. and Walling, L. L. 2006. Constitutive and jasmonate-inducible traits of Datura wrightii. J. Chem. Ecol. 32:29–47.

    Article  PubMed  CAS  Google Scholar 

  • Heil, M. 2004. Induction of two indirect defences benefits lima bean (Phaseolus lunatus, Fabaceae) in nature. J. Ecol. 92:527–536.

    Article  Google Scholar 

  • Hermsmeier, D., Schittko, U., and Baldwin, I. T. 2001. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata I. Large-scale changes in the accumulation of growth- and defense-related plant mRNAs. Plant Physiol. 125:683–700.

    Article  PubMed  CAS  Google Scholar 

  • Huang, Y. M., Xiao, B. Z., and Xiong, L. Z. 2007. Characterization of a stress responsive proteinase inhibitor gene with positive effect in improving drought resistance in rice. Planta 226:73–85.

    Article  PubMed  CAS  Google Scholar 

  • Izaguirre, M. M., Mazza, C. A., Svatos, A., Baldwin, I. T., and Ballare, C. L. 2007. Solar ultraviolet-B radiation and insect herbivory trigger partially overlapping phenolic responses in Nicotiana attenuata and Nicotiana longiflora. Ann. Bot. 99:103–109.

    Article  PubMed  CAS  Google Scholar 

  • Jongsma, M. A., Bakker, P. L., and Stiekema, W. J. 1993. Quantitative-determination of serine proteinase-inhibitor activity using a radial diffusion assay. Anal. Biochem. 212:79–84.

    Article  PubMed  CAS  Google Scholar 

  • Karban, R. 2011. The ecology and evolution of induced resistance against herbivores. Funct. Ecol. 25:339–347.

    Article  Google Scholar 

  • Karban, R. and Baldwin, I. T. 1997. Induced Responses to Herbivory. University of Chicago Press, Chicago, Illinois.

    Google Scholar 

  • Karban, R. and Myers, J. H. 1989. Induced plant responses to herbivory. Annu. Rev. Ecol. Syst. 20:331–348.

    Article  Google Scholar 

  • Kessler, A. and Halitschke, R. 2009. Testing the potential for conflicting selection on floral chemical traits by pollinators and herbivores: Predictions and case study. Funct. Ecol. 23:901–912.

    Article  Google Scholar 

  • Koricheva, J. 2002. Meta-analysis of sources of variation in fitness costs of plant antiherbivore defenses. Ecology 83:176–190.

    Article  Google Scholar 

  • Laluk, K. and Mengiste, T. 2011. The Arabidopsis extracellular unusual serine protease inhibitor functions in resistance to necrotrophic fungi and insect herbivory. Plant J. 68:480–494.

    Article  PubMed  CAS  Google Scholar 

  • Rohwer, C. L. and Erwin, J. E. 2008. Horticultural applications of jasmonates: A review. J. Horticult. Sci. Biotechnol. 83:283–304.

    CAS  Google Scholar 

  • SAS INSTITUTE. 2008. Sas for Windows Version 9.2. SAS Institute. Cary, N. C.

  • Schluter, U., Benchabane, M., Munger, A., Kiggundu, A., Vorster, J., Goulet, M. C., Cloutier, C., and Michaud, D. 2010. Recombinant protease inhibitors for herbivore pest control: A multitrophic perspective. J. Exp. Bot. 61:4169–4183.

    Article  PubMed  Google Scholar 

  • Schmidt, D. D. and Baldwin, I. T. 2006. Transcriptional responses of Solanum nigrum to methyl jasmonate and competition: A glasshouse and field study. Funct. Ecol. 20:500–508.

    Article  Google Scholar 

  • Srinivasan, T., Kumar, K. R. R., and Kirti, P. B. 2009. Constitutive expression of a trypsin protease inhibitor confers multiple stress tolerance in transgenic tobacco. Plant Cell Physiol. 50:541–553.

    Article  PubMed  CAS  Google Scholar 

  • van Dam, N. M., Hare, J. D., and Elle, E. 1999. Inheritance and distribution of trichome phenotypes in Datura wrightii. J. Hered. 90:220–227.

    Article  Google Scholar 

  • van Dam, N. M., Horn, M., Mares, M., and Baldwin, I. T. 2001. Ontogeny constrains systemic protease inhibitor response in Nicotiana attenuata. J. Chem. Ecol. 27:547–568.

    Article  PubMed  Google Scholar 

  • Walters, D. R. 2009. Are plants in the field already induced? Implications for practical disease control. Crop Protect. 28:459–465.

    Article  Google Scholar 

  • Zangerl, A. R. and Bazazz, F. A. 1992. Theory and pattern in plant defense allocation, pp. 363–391, in R. S. Fritz and E. L. Simms (eds.), Plant Resistance to Herbivores and Pathogens: Ecology, Evolution and Genetics. University of Chicago Press, Chicago, Illinois.

    Google Scholar 

Download references

Acknowledgments

We thank T. Burhans, A. Cossette, J. Lobos, B. Musakwa, L. Nguyen, A. Phan, and T. Spencer for assistance in the field and laboratory and D. Cipollini and M. Heil for comments on previous drafts. This research was funded by the National Science Foundation grant DEB 0414181 to J. D. Hare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Daniel Hare.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Esm 1

(DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruidhof, H.M., Allison, J.D. & Hare, J.D. Abiotic Induction Affects the Costs and Benefits of Inducible Herbivore Defenses in Datura wrightii . J Chem Ecol 38, 1215–1224 (2012). https://doi.org/10.1007/s10886-012-0168-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-012-0168-9

Keywords

Navigation