Skip to main content
Log in

Testing for Phytochemical Synergism: Arthropod Community Responses to Induced Plant Volatile Blends Across Crops

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Using herbivore-induced plant volatiles (HIPVs) to attract specific natural enemies in the field has proven challenging, partly because of a poor understanding of: (i) which compound(s) to manipulate to attract specific taxa, and (ii) the ecological conditions over which HIPVs are effective. To address these issues, we quantified the response of a complex arthropod community to three common HIPVs (methyl salicylate, cis-3-hexen-1-ol, and phenylethyl alcohol) as individual compounds and equal part blends in corn and soybean fields. Of 119 arthropod taxa surveyed, we found significant responses by four species in corn fields (2 parasitoids, 1 herbivore, and 1 detritivore) and 16 in soybean fields (8 parasitoids, 3 predators, 4 herbivores, and 1 detritivore), with both attractive and repellent effects of the HIPVs observed. For example, tachinid flies were highly attracted to cis-3-hexen-1-ol (ca. 3-fold increase), but repelled by methyl salicylate (ca. 60 % decrease). Surprisingly, we found very few cases in which HIPVs acted synergistically; only two arthropod groups (ichneumonid wasps and phorid flies) were more attracted by a blend of the HIPVs than by the individual compounds composing the blend. Crop type, however, had a strong impact on the strength of arthropod responses to HIPVs. A few arthropod species were broadly affected across both crops (i.e., the herbivore Halticus bractatus was repelled by most of our treatments, regardless of crop background), but overall more arthropod groups responded to HIPVs released in soybean fields compared with corn. This was true despite the fact that taxa responding to HIPVs were present and abundant in both systems, suggesting that crop-based outcomes were likely driven by the plant matrix rather than mere differences in taxonomic composition of the arthropod community in corn vs. soybean fields. As a whole, these results suggest that: (i) repellent effects of HIPVs on natural enemies of herbivorous insects can be observed as frequently as attractive effects; (ii) odor blends may be no more effective than single-compound lures for some taxa; and (iii) crop background alters the magnitude of attraction to HIPVs, depending on the species being targeted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrawal, A. A., Janssen, A., Bruin, J., Posthumus, M. A., and Sabelis, M. W. 2002. An ecological cost of plant defence: attractiveness of bitter cucumber plants to natural enemies of herbivores. Ecol. Letters 5:377–385.

    Google Scholar 

  • Beyaert, I., Wäschke, N., Scholz, A., Varama, M., Reinecke, A., and Hilker, M. 2010. Relevance of resource-indicating key volatiles and habitat odour for insect orientation. Anim. Behav. 79:1077–1086.

    Article  Google Scholar 

  • Bolter, C. J., Dicke, M., van Loon, J. J., Visser, J. H., and Posthumus, M. A. 1997. Attraction of Colorado potato beetle to herbivore-damaged plants during herbivory and after its termination. J. Chem. Ecol. 23:1003–1023.

    Google Scholar 

  • Buttery, R. G. and Ling, L. C. 1984. Corn leaf volatiles: Identification using tenax trapping for possible insect attractants. J. Agric. Food Chem. 32:1104–1106.

    Article  CAS  Google Scholar 

  • Chen, L., Onagbola, E. O., and Fadamiro, H. Y. 2005. Effects of temperature, sugar availability, gender, mating, and size on the longevity of phorid fly Pseudacteon tricuspis (Diptera: Phoridae). Environ. Entomol. 34:246–255.

    Article  CAS  Google Scholar 

  • Croteau, R. and Karp, F. 1991. Origin of natural odorants, pp. 101–126, in P. M. Muller and D. Lamparsky (eds.), Perfumes: Art, Science and Technology. Elsevier Applied Science, London.

    Google Scholar 

  • Damiani, P., Cossignani, L., Castellini, M., and Bin, F. 2000. Clean recovery and HRGC-MS/HRGC-FTIR identification of volatiles from soybean (Glycine max). Ital. J. Food Sci. 12:175–182.

    Google Scholar 

  • Degenhardt, J., Hiltpold, I., Köllner, T. G., Frey, M., Gierl, A., Gershenzon, J., Hibbard, B. E., Ellersieck, M. R., and Turlings, T. C. J. 2009. Restoring a maize root signal that attracts insect-killing nematodes to control a major pest. Proc. Natl. Acad. Sci. U. S. A 106:13213–13218.

    Article  PubMed  CAS  Google Scholar 

  • Desouhant, E., Driessen, G., Amat, I., and Bernstein, C. 2005. Host and food searching in a parasitic wasp Venturia canescens: A trade-off between current and future reproduction? Anim. Behav. 70:145–152.

    Article  Google Scholar 

  • Dicke, M. 2009. Behavioural and community ecology of plants that cry for help. Plant Cell Environ. 32:654–665.

    Article  PubMed  CAS  Google Scholar 

  • Dickens, J. C. 2000. Orientation of Colorado potato beetle to natural and synthetic blends of volatiles emitted by potato plants. Agric. For. Entomol. 2:167–172.

    Article  Google Scholar 

  • Engelberth, J., Alborn, H. T., Schmelz, E. A., and Tumlinson, J. H. 2004. Airborne signals prime plants against insect herbivore attack. Proc. Natl. Acad. Sci. U. S. A. 101:1781–1785.

    Article  PubMed  CAS  Google Scholar 

  • Faith, D. P., Minchin, P. R., and Belbin, L. 1987. Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69:57–68.

    Article  Google Scholar 

  • Flint, H. M., Salter, S. S., and Walters, S. 1979. Caryophyllene: An attractant for the green lacewing. Environ. Entomol. 8:1123–1125.

    CAS  Google Scholar 

  • Hagley, E. A. C. and Barber, D. R. 1992. Effect of food sources on the longevity and fecundity of Pholetesor ornigris (Weed) (Hymenoptera: Braconidae). Can. Entomol. 124:341–346.

    Article  Google Scholar 

  • Halitschke, R., Stenberg, J. A., Kessler, D., Kessler, A., and Baldwin, I. T. 2008. Shared signals—‘alarm calls’ from plants increase apparency to herbivore and their enemies in nature. Ecol. Lett. 11:24–34.

    PubMed  Google Scholar 

  • Hall, D. W. and Brown, B. V. 1993. Pollination of Aristolochia littoralis (Aristolochiales: Aristolochiaceae) by males of Megaselia spp. (Diptera: Phoridae). Ann. Entomol. Soc. Am. 86:609–613.

    Google Scholar 

  • Heimpel, G. E., Rosenheim, J. A., and Kattari, D. 1997. Adult feeding and lifetime reproductive success in the parasitoid Aphytis melinus. Entomol. Exp. Appl. 83:305–315.

    Article  Google Scholar 

  • Honda, K., Omura, H., and Hayashi, N. 1998. Identification of floral volatiles from Ligustrum japonicum that stimulate flower visiting by cabbage butterfly, Pieris rapae. J. Chem. Ecol. 24:2167–2180.

    Article  CAS  Google Scholar 

  • Hunter, M. D. 2002. A breath of fresh air: Beyond laboratory studies of plant volatile–natural enemy interactions. Agric. For. Entomol. 4:81–86.

    Article  Google Scholar 

  • James, D. G. 2003a. Field evaluation of herbivore-induced plant volatiles as attractants for beneficial insects: Methyl salicylate and the green lacewing, Chrysopa nigricornis. J. Chem. Ecol. 29:1601–1609.

    Article  PubMed  CAS  Google Scholar 

  • James, D. G. 2003b. Synthetic herbivore-induced plant volatiles as field attractants for beneficial insects. J. Chem. Ecol. 32:977–982.

    CAS  Google Scholar 

  • James, D. G. 2005. Further field evaluation of synthetic herbivore-induced plant volatiles as attractants for beneficial insects. J. Chem. Ecol. 31:481–495.

    Article  PubMed  CAS  Google Scholar 

  • James, D. G. and Grasswitz, T. R. 2005. Synthetic herbivore-induced plant volatiles increase field captures of parasitic wasps. Biol. Control. 50:871–880.

    CAS  Google Scholar 

  • James, D. G. and Price, T. S. 2004. Field-testing of methyl salicylate for recruitment and retention of beneficial insects in grapes and hops. J. Chem. Ecol. 30:1613–1628.

    Article  PubMed  CAS  Google Scholar 

  • Jones, V. P., Steffan, S. A., Wiman, N. G., Horton, D. R., Miliczky, E., Zhang, Q., and Baker, C. C. 2010. Evaluation of herbivore-induced plant volatiles for monitoring green lacewings in Washington apple orchards. Biol. Control. 56:98–105.

    Article  Google Scholar 

  • Kaplan, I. 2012. Attracting carnivorous arthropods with plant volatiles: The future of biocontrol or playing with fire? Biol. Control. 60:77–89.

    Article  Google Scholar 

  • Kappers, I. F., Aharoni, A., Van Herpen, T. W. J. M., Luckerhoff, L. L. P., Dicke, M., and Bouwmeester, H. J. 2005. Genetic engineering of terpenoid metabolism attracts bodyguards to Arabadopsis. Science 309:2070–2072.

    Article  PubMed  CAS  Google Scholar 

  • Karban, R. and Baldwin, I. T. Induced Responses to Herbivory. Univ. of Chicago Press, Chigago, IL. USA.

  • Kessler, A. and Baldwin, T. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144.

    Article  PubMed  CAS  Google Scholar 

  • Khan, Z. R., James, D. G., Midega, C. A. O., and Pickett, J. A. 2008. Chemical ecology and conservation biological control. Biol. Control. 45:210–224.

    Article  CAS  Google Scholar 

  • Kigathi, R. N., Unsicker, S. B., Reichelt, M., Kesselmeier, J., Gershenzon, J., and Weisser, W. W. 2009. Emission of volatile organic compounds after herbivory from Trifolium pratense (L.) under laboratory and field conditions. J. Chem. Ecol. 35:1335–1348.

    Google Scholar 

  • Landis, D. A., Wratten, S. D., and Gurr, G. M. 2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45:175–201.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. C. 2010. Effect of methyl salicylate-based lures on beneficial and pest arthropods in strawberry. Environ. Entomol. 39:653–660.

    Article  PubMed  CAS  Google Scholar 

  • Levin, D. A. 1976. The chemical defenses of plants to pathogens and herbivores. Annu. Rev. Ecol. Syst. 7:121–160.

    Article  CAS  Google Scholar 

  • Lou, Y., Hua, X., Turlings, T. C. J., Cheng, J., Chen, X., and Ye, G. 2006. Differences in induced volatile emissions among rice varieties result in differential attraction of parasitism of Nilaparvata lugens eggs by the parasitoid Anagrus nilaparvatae in the field. J. Chem. Ecol. 32:2375–2387.

    Article  PubMed  CAS  Google Scholar 

  • Mallinger, R. E., Hogg, D. B., and Gratton, C. 2011. Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroecosystems. J. Econ. Entomol. 104:115–124.

    Article  PubMed  Google Scholar 

  • Mann, J. 1987. Secondary Metabolism. Claredon Press, Oxford.

    Google Scholar 

  • Minchin, P. R. 1987. Simulation of multidimensional community patterns: Towards a comprehensive model. Vegetatio 71:145–156.

    Google Scholar 

  • MINCHIN, P. R. 2001. DECODA (Database for Ecological Community Data), version 3.0, copyright 1990–2001, Australian National University. Distributed by ANUTECH Pty. Ltd.

  • Oliver, I. and Beattie, A. J. 1996. Invertebrate morphospecies as surrogates for species: A case study. Conserv. Biol. 10:99–109.

    Article  Google Scholar 

  • Orre, G. U. S., Wratten, S. D., Jonsson, M., and Hale, R. J. 2010. Effects of an herbivore-induced plant volatile on arthropods from three trophic levels in brassicas. Biol. Control. 53:62–67.

    Article  Google Scholar 

  • Pierre, P. S., Jansen, J. J., Hordijk, C. A., Van Dam, N. M., Cortesero, A., and Dugravot, S. 2011. Differences in volatile profiles of turnip plants subjected to single and dual herbivory above- and belowground. J. Chem. Ecol. 37:368–377.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Saona, C., Kaplan, I., Braasch, J., Chinnasamy, D., and Williams, L. 2011. Field responses of predaceous arthropods to methyl salicylate: A meta-analysis and case study in cranberries. Biol. Control. 59:294–303.

    Article  CAS  Google Scholar 

  • Rostas, M. and Eggert, K. 2008. Ontogenetic and spatio-temporal patterns of induced volatiles in Glysine max in the light of the optimal defence hypothesis. Chemoecology 18:29–38.

    Article  CAS  Google Scholar 

  • Scutareanu, P., Bruin, J., Posthumus, M. A., and Drukker, B. 2003. Constitutive and herbivore-induced volatiles in pear, alder and hawthorn trees. Chemoecology 13:63–74.

    CAS  Google Scholar 

  • Scutareanu, P., Drukker, B., Bruin, J., Posthumus, M. A., and Sabelis, M. W. 1997. Volatiles from Psylla-infested pear trees and their possible involvement in attraction of anthocorid predators. J. Chem. Ecol. 23:2241–2260.

    Google Scholar 

  • Simpson, M., Gurr, G. M., Simmons, A. T., Wratten, S. D., James, D. G., Leeson, G., and Nicol, H. I. 2011. Insect attraction to synthetic herbivore-induced plant volatile-treated field crops. Agric. For. Entomol. 1:45–57.

    Article  Google Scholar 

  • Snoeren, T. A. L., Mumm, R., Poelman, E. H., Yang, Y., Pichersky, E., and Dicke, M. 2010. The herbivore-induced plant volatile methyl salicylate negatively affects attraction of the parasitoid Diadegma semiclausum. J. Chem. Ecol. 36:479–489.

    Article  PubMed  CAS  Google Scholar 

  • Szendrei, Z. and Rodriguez-Saona, C. 2010. A meta-analysis of insect pest behavior manipulation with plant volatiles. Entomol. Exp. Appl. 134:201–210.

    Article  Google Scholar 

  • Takabayashi, J., Takahashi, S., Dicke, M., and Posthumus, M. A. 1995. Developmental state of herbivore Pseudaletia separata affects production of herbivore-induced synomone by corn plants. J. Chem. Ecol. 21:273–287.

    Article  CAS  Google Scholar 

  • Takasu, K. and Lewis, W. J. 1993. Host- and food-foraging of the parasitoid Microplitis croceipes: Learning and physiological state effects. Biol. Control. 3:70–74.

    Article  Google Scholar 

  • Tanaka, K., Uda, Y., Ono, Y., Nakagawa, T., Suwa, M., Yamaoka, R., and Touhara, L. 2009. Highly selective tuning of a silkworm olfactory receptor to a key mulberry leaf volatile. Curr. Biol. 19:881–890.

    Article  PubMed  CAS  Google Scholar 

  • Thaler, J. S. 1999. Jasmonate-inducible plant defenses cause increased parasitism of herbivore. Nature 399:686–688.

    Article  CAS  Google Scholar 

  • Tóth, M., Szentkirályi, F., Vuts, J., Letardi, A., Tabilio, M. R., Jaastad, G., and Knudsen, G. K. 2009. Optimization of a phenylacetaldehyde-based attractant for common green lacewings (Chrysoperla carnea s.l.). J. Chem. Ecol. 35:449–458.

    Article  PubMed  Google Scholar 

  • Turlings, T. C. J. and Ton, J. 2006. Exploiting scents of distress: The prospect of manipulating herbivore-induced plant odours to enhance the control of agricultural pests. Curr. Opin. Plant Biol. 9:421–427.

    Article  PubMed  Google Scholar 

  • Turlings, T. C. J., Tumlinson, J. H., and Lewis, W. J. 1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253.

    Article  PubMed  CAS  Google Scholar 

  • Turlings, T. C. J., Lenwiler, U. B., Bernasoni, M. L., and Wechsler, D. 1998. Timing of induced volatile emissions in maize seedlings. Planta 1:146–152.

    Article  Google Scholar 

  • Van den Boom, C. E. M., Van Beek, T. A., Posthumus, M. A., De GrooT, A., and Dicke, M. 2004. Qualitative and quantitative variation among profiles induced by Tetranychus urticae feeding on plants from various families. J. Chem. Ecol. 30:69–89.

    Article  PubMed  Google Scholar 

  • Van Wijk, M., de Bruijn, P. J. A., and Sabelis, M. W. 2011. Complex odor from plants under attack: Herbivore’s enemies react to the whole, not its parts. PLoS One 6:e21742.

    Article  PubMed  Google Scholar 

  • Vet, L. E. M. and Dicke, M. 1992. Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37:141–172.

    Article  Google Scholar 

  • Von Mérey, G., Veyrat, N., Mahuku, G., Lopez Valdez, R., and Turlings, T. C. J. 2011. Dispensing synthetic green leaf volatiles in maize fields increases the release of sesquiterpenes by the plants, but has little effect on the attraction of pests and beneficial insects. Phytochemistry 72:1838–1847.

    Article  Google Scholar 

  • Wäckers, F. L. 1994. The effect of food deprivation on the innate visual and olfactory preferences in the parasitoid Cotesia rubecula. J. Insect Physiol. 40:641–649.

    Article  Google Scholar 

  • Warwick, R. M., Clarke, K. R., and Suharnso 1990. A statistical analysis of coral community esponses to the 1982–1983 El Niño in the Thousand Islands, Indonesia. Coral Reefs 8:171–179.

    Article  Google Scholar 

  • Webster, B., Bruce, T., Pickett, J., and Hardie, J. 2010. Volatiles functioning as host cues in a blend become nonhost cues when presented alone to the black bean aphid. Anim. Behav. 79:451–457.

    Article  Google Scholar 

  • Weissbecker, B., Van Loon, J. J. A., Posthumus, M. A., Bouwmeester, H. J., and Dicke, M. 2000. Identification of volatile potato sesquiterpenoids and their olfactory detection by the two-spotted sinkbug Perillus bioculatus. J. Chem. Ecol. 26:1433–1445.

    Article  CAS  Google Scholar 

  • Williams, L., Rodriquez-Saona, C., Castle, S. C., and Zhu, S. 2008. EAG-active herbivore-induced plant volatiles modify behavioral responses and host attack by an egg parasitoid. J. Chem. Ecol. 34:1190–1201.

    Google Scholar 

  • Yu, H., Zhang, Y., Wu, K., Gao, X. W., and Guo, Y. Y. 2008. Field-testing of synthetic herbivore-induced plant volatiles as attractants for beneficial insects. Environ. Entomol. 37:1410–1415.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J. and Park, K. C. 2005. Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata. J. Chem. Ecol. 31:1733–1745.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J., Cossé, A. A., Obrycki, K. S. B., and Baker, T. C. 1999. Olfactory reactions of the twelve-spotted lady beetle, Coleomegilla maculata and the green lacewing, Chrysoperla carnea to semiochemicals released from their prey and host plant: Electroantennogram and behavioral responses. J. Chem. Ecol. 25:1163–1177.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Brian Brown (Natural History Museum of Los Angeles County) for his help with phorid identifications, Purdue University, and USDA (NIFA, Grant No. 2011-67013-30126) for funding this work. Thanks also to Gina Angelella, Carmen Blubaugh, Matthew Ginzel, Ulianova Vidal-Gómez, Jessica Kelly, Christian Krupke, Cesar Rodriguez-Saona, and two anonymous reviewers for help and insight in designing the project and writing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Braasch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Average release rates of volatile blends over the course of the 2010 summer season. Bars are shaded according to the number of HIPVs in the blend, with single volatiles light grey and the blend of three volatiles shaded darkest. M = methyl salicylate, H = cis-3-hexen-1-ol, P = phenylethyl alcohol. (DOCX 21 kb)

Table S1

Herbivorous arthropod counts for both corn and soybean fields in 2010 (DOCX 15 kb)

Table S2

Predatory or parasitic arthropod counts for both corn and soybean fields in 2010 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braasch, J., Wimp, G.M. & Kaplan, I. Testing for Phytochemical Synergism: Arthropod Community Responses to Induced Plant Volatile Blends Across Crops. J Chem Ecol 38, 1264–1275 (2012). https://doi.org/10.1007/s10886-012-0202-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-012-0202-y

Keywords

Navigation