Skip to main content
Log in

Production and Antimicrobial Activity of 3-Hydroxypropionaldehyde from Bacillus subtilis Strain CU12

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Bacillus subtilis strains are known to produce a vast array of antimicrobial compounds. However, some compounds remain to be identified. Disk assays performed in vitro with Bacillus subtilis CU12 showed a significant reduction in mycelial growth of Alternaria solani, Botrytis cinerea, Fusarium sambucinum, and Pythium sulcatum. Crude B. subtilis culture filtrates were subsequently extracted with ethyl acetate and butanol. A bioassay guided purification procedure revealed the presence of one major antifungal compound in the butanol extract. Purification of the compound was performed using a reverse-phase C18 solid phase extraction (SPE) cartridge and flash column chromatography. NMR data showed that the main antimicrobial compound was a cyclic dimer of 3-hydroxypropionaldehyde (HPA). This study demonstrated the antimicrobial activity of B. subtilis strain CU12 against phytopathogenic microorganisms is mediated at least in part by the production of HPA. It also suggests that this B. subtilis strain could be effective at controlling pathogens through protection of its ecological niche by antibiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Avis, T. J., Gravel, V., Antoun, H., and Tweddell, R. J. 2008. Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol. Biochem. 40:1733–1740.

    Article  CAS  Google Scholar 

  • Bélanger, R. R. and Avis, T. J. 2002. Ecological processes and interactions occurring in leaf surface fungi, pp. 193–207, in S. E. Lindow, E. I. Hecht-Poinar, and V. J. Elliot (eds.), Phyllosphere Microbiology. APS Press, St. Paul.

    Google Scholar 

  • Chen, C.-N., Sung, H.-W., Liang, H.-F., and Chang, W.-H. 2002. Feasibility study using a natural compound (reuterin) produced by Lactobacillus reuteri in sterilizing and crosslinking biological tissues. J. Biomed. Mater. Res. 61:360–369.

    Article  PubMed  CAS  Google Scholar 

  • Dobrogosz, W. J. and Lindgren, S. E. 1988. Antibiotic Reuterin. US patent PCT/US88/01423.

  • Garrity, G. M., Bell, J. A., and Lilburn, T. G. 2004. Taxonomic Outline of the Prokaryotes. Bergey’s Manual of Systematic Bacteriology, 2nd ed. Springer, New York.

    Google Scholar 

  • Hamdache, A., Lamarti, A., Aleu, J., and Collado, I. G. 2011. Non-peptide metabolites from the genus Bacillus. J. Nat. Prod. 74:893–899.

    Article  PubMed  CAS  Google Scholar 

  • Holt, J. G. 1986. Bergey’s Manual of Systematic Bacteriology 1st Edition. Vol. 2. Gram-Positive Bacteria Other than Actinomycetes. Williams & Wilkins, Baltimore.

    Google Scholar 

  • Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends Microbiol. 16:115–125.

    Article  PubMed  CAS  Google Scholar 

  • Schaefer, L., Auchtung, T. A., Hermans, K. E., Whitehead, D., Borhan, B., and Britton, R. A. 2010. The antimicrobial compound reuterin (3-hydroxypropionaldehyde) induces oxidative stress via interaction with thiol groups. Microbiology 156:1589–1599.

    Article  PubMed  CAS  Google Scholar 

  • Stein, T. 2005. Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Mol. Microbiol. 56:845–857.

    Article  PubMed  CAS  Google Scholar 

  • Sung, H.-W., Chen, C.-N., Chang, Y., and Liang, H.-F. 2002. Biocompatibility study of biological tissues fixed by a natural compound (reuterin) produced by Lactobacillus reuteri. Biomaterials 23:3203–3214.

    Article  PubMed  CAS  Google Scholar 

  • Sung, H.-W., Chen, C.-N., Liang, H.-F., and Hong, M.-H. 2003. A natural compound (reuterin) produced by Lactobacillus reuteri for biological-tissue fixation. Biomaterials 24:1335–1347.

    Article  PubMed  CAS  Google Scholar 

  • Talarico, T. L. and Dobrogosz, W. J. 1989. Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri. Microbiology 33:674–679.

    CAS  Google Scholar 

  • Voisenet, M. E. 1914. Sur un ferment, contenu dans les eaux, agent de déshydratation de la glycérine. C. R. Acad. Sci. 150:1614–1616.

    Google Scholar 

  • Vollenweider, S. and Lacroix, C. 2004. 3-hydroxypropionaldehyde: Applications and perspectives of biotechnological production. Appl. Microbiol. Biotechnol. 64:16–27.

    Article  PubMed  CAS  Google Scholar 

  • Vollenweider, S., Grassi, G., König, I., and Puhan, Z. 2003. Purification and structural characterization of 3-hydroxypropionaldehyde and its derivatives. J. Agric. Food Chem. 51:3287–3293.

    Article  PubMed  CAS  Google Scholar 

  • Vollenweider, S., Evers, S., Zurbriggen, K., and Lacroix, C. 2010. Unraveling the hydroxypropionaldehyde (HPA) system: An active antimicrobial agent against human pathogens. J. Agric. Food Chem. 58:10315–10322.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Yichen Du and Justin Falardeau for technical assistance. This work was supported by a research grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Avis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wise, C., Novitsky, L., Tsopmo, A. et al. Production and Antimicrobial Activity of 3-Hydroxypropionaldehyde from Bacillus subtilis Strain CU12. J Chem Ecol 38, 1521–1527 (2012). https://doi.org/10.1007/s10886-012-0219-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-012-0219-2

Keywords

Navigation